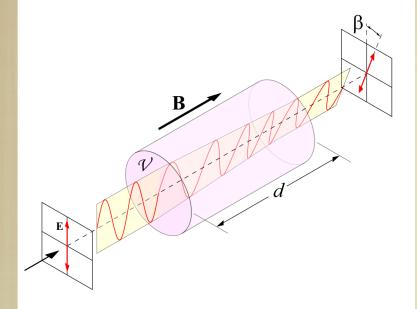

Structure in the magnetic field of the Milky Way

Dominic Schnitzeler, Max Planck Institut fuer Radioastronomie schnitzeler@mpifr-bonn.mpg.de

Based on: Schnitzeler 2010, MNRAS, 409, 99

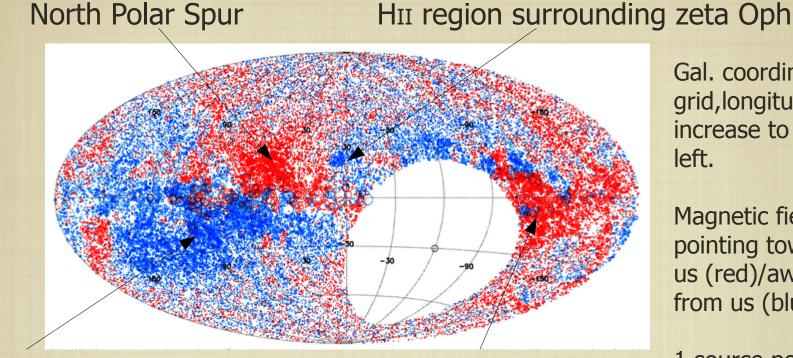

Abstract

- sigma_RM (Milky Way) follows the same 1/sin|b| behaviour as the dispersion measures of infinite lines of sight (|b| > 20°)
- sigma_RM(b) ≈ sqrt{(8/sin|b|)² + 6²} rad/m² |b| > 20° (on scales between 1° - 10°, angular resolution ≈ 45″)
- the Galactic foreground, not the intrinsic RMs of the extragalactic sources themselve, dominates the observed RMs
- the extragalactic contribution to sigma_RM is ≈ 6 rad/m² (discrete sources + intergalactic fields)
- sigma_<B₁₁> \leq 0.4 µG (Galactic foreground)

Overview

- Rotation measures; the RM catalogue by Taylor + 2009
- Correcting sigma_RM for large-scale structure in the Galactic foreground, and for measurement uncertainties in RM.
- The contributions by the Galactic foreground and the extragalactic background
- Physical implications
- Caveat: limited angular resolution
- Future work

Rotation Measures vs. Dispersion Measures



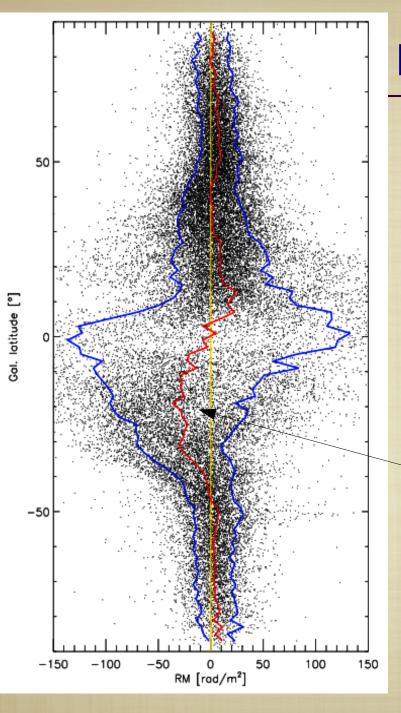
Source: Wikipedia

 $RM = 0.81 \int_{\text{there}}^{\text{here}} n_e B_{\parallel} dl$ Faraday rotation $DM = \int_{\text{there}}^{\text{here}} n_e dl \qquad \underset{\text{Measure}}{\text{Dispersion}}$

Pulsars: pulse arrival times at different freq.

Getting the big picture requires big surveys

Gal. coordinate grid, longitudes increase to the left.


Magnetic field pointing towards us (red)/away from us (blue)

"Region A"

(one half of the) Gum nebula

1 source per 1 square degree

Taylor et al. (2009): RMs for 37,543 sources from the NVSS catalogue (Very Large Array; DEC > -40°) 1 RM per square degree. Median err_RM approximately 11 rad/m²

RMs in the Galactic halo

The scatter in RMs increases closer to the Galactic plane

red: RM(*b*), averaged over galactic longitude blue: sigma_RM

2 effects:

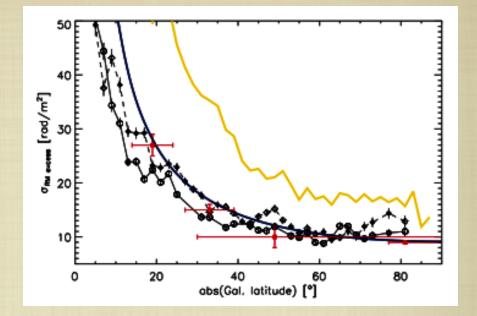
 sources from Region A have very negative RMs
 no NVSS RMs below DEC= -40°

sigma_RM(b)

Calculate sigma_RM in strips along Galactic latitude.

Step 1: Remove the large-scale structure in RM from the Milky Way

Sample RM bins of 5°/cos|b| x 4° (about 20 RMs per bin; Nyquist sampling of scales > 10° on the sky)
Model the large-scale structure as a cubic spline fit to the bins
Subtract this spline fit from each RM.
Calculate sigma_RM in each latitude strip: sigma_RM_step1


Step 2: Correct for the contribution of err_RM to sigma_RM Drawing 1000 RMs randomly for the ensemble gives an err_RM = 10.4 +/- 0.2 rad/m² (Monte Carlo) sigma_RM_step2^2 = sigma_RM_step1^2 - 10.4^2

sigma_RM(b)

yellow: sigma_RM uncorrected

solid/dashed lines: corrected sigma_RM for positive/negative Latitudes. (chi²_red < 4)

blue: simple model fit: sigmaRM $\propto 1/\sin|b|$

red: independent data from other authors (Cen A: Feain et al. 2009, LMC: Gaensler et al. 2005, = 49°: Johnston-Hollitt et al. 2004, = 81°: Mao et al. 2010.) Not shown: SMC data sigmaRM=22 rad/m² for = -44° (Mao+ 2008) A2255 data sigmaRM=19 rad/m² for = 35° (Pizzo+2010)

NOTE:

1: also the literature data follow a 1/sin|*b*| dependence

2: cubic spline does a decent job at removing the Galactic foreground

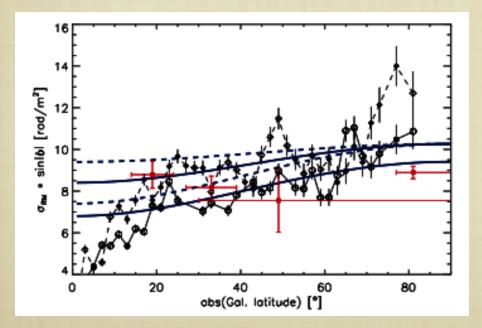
Structure in the Galactic halo: sigma_RM(b) * sin|b|

• Take out the 1/sin|b| dependence:

Model sigma_RM as

$$\sigma_{\rm RM}(b) = \sqrt{\left(\frac{\sigma_{\rm RM,MW}}{\sin|b|}\right)^2 + \sigma_{\rm RM,EG}^2}$$

 sigma_RM(extragalactic) does not depend on viewing direction → separate foreground from background


Why should sigma_RM $\propto 1/\sin|b|$?

- RM depends on n_e and B_{II}
- The free electrons follow an exponential or sech² distribution away from the Galactic plane
- Therefore, DM_∞ ∝ 1/sin|b|
- \rightarrow try sigma_RM = 1/sin|*b*|

Structure in the Galactic halo: sigma_RM(b) * sin|b|

Model sigma_RM (corrected) as

$$\sigma_{\rm RM}(b) = \sqrt{\left(\frac{\sigma_{\rm RM,MW}}{\sin|b|}\right)^2 + \sigma_{\rm RM,EG}^2} = \sqrt{\left(\frac{8}{\sin|b|}\right)^2 + 6^2}$$

Best fits: MW / EG $b > 0^{\circ} 6.8 / 6.5 rad/m^{2}$ $b < 0^{\circ} 8.4 / 5.9 rad/m^{2}$

chi²_red: 4.4/3.9 (*b* < 0°/*b* > 0°)

Structure in the Galactic halo

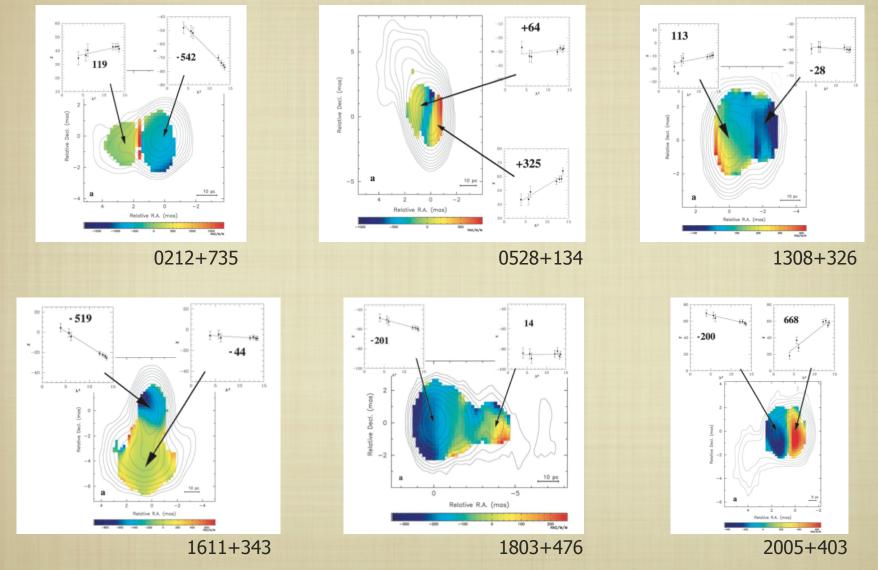
Model sigma_RM (corrected) as

$$\sigma_{\rm RM}(b) = \sqrt{\left(\frac{\sigma_{\rm RM,MW}}{\sin|b|}\right)^2 + \sigma_{\rm RM,EG}^2} = \sqrt{\left(\frac{8}{\sin|b|}\right)^2 + 6^2}$$

- Structure in the Galactic foreground on scales >~ 1° dominates sigma_RM at all Galactic latitudes
 → take care when studying extragalactic RM
- The sigma_RM of extragalactic sources is 6 rad/m²: the same value as found by Leahy (1987) (but I was not aware of his work when I calculated this number!)
- This sigma_RM_EG includes the RMs from the sources themselves, plus from intergalactic fields

Upper limits

 The Milky Way might also contribute a sigma_RM component that does not depend on b


 \rightarrow the true sigma_RM_EG < 6 rad/m²

 Assuming no correlation between n_e and B_{||}, sigma_RM_MW can be separated into contributions by sigma_n_e and by sigma_B_{||} Assuming sigma_n_e = 0 (smooth electron density model): sigma_<B_{||}> = sigma_RM_MW/{0.81*DM_∞(b=90°)} ≈ 0.4µG

Implications

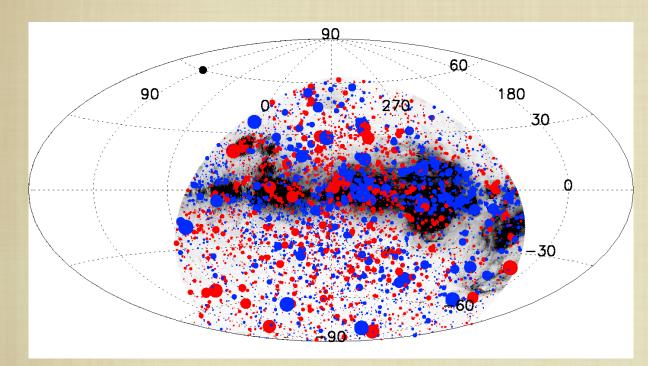
- Studies of the Galactic foreground: average out the extragalactic contribution to RM (Mao+2012)
- Models of the intergalactic magnetic field show that its sigma_RM is several rad/m² (Akahori & Ryu 2011)
- Does sigma_RM_EG depend on redshift? Kronberg+ 2008: yes, Hammond+ 2012, Everett+2012: no Need to accurately remove the foreground sigmaRM
- Cosmic ray propagation in the lobes of Centaurus A (e.g. Feain+ 2010)

Caveat: limited angular resolution

Examples from Zavala & Talor 2003

Future work (near and far)

Near future S-PASS (see also E. Carretti's talk on Wednesday)


Extend this work to smaller |*b*|: requires accurate models of the free electron density (see also DS 2012)

More distant future

<u>Dense</u> grids of <u>accurate</u> RMs that cover the entire sky: ASKAP, LOFAR, MWA, APERTIF

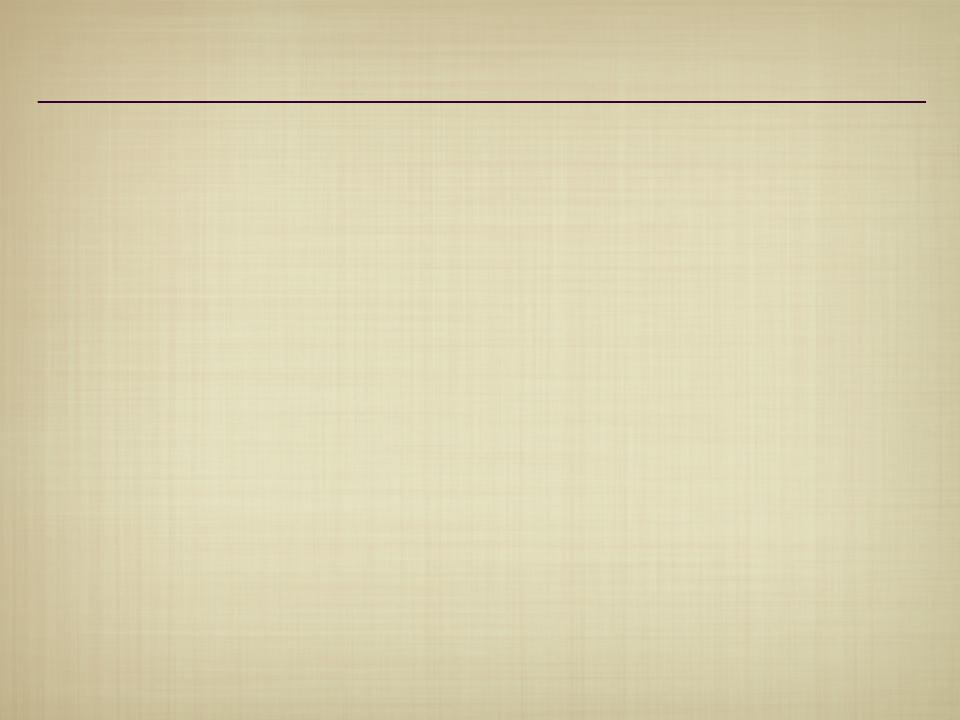
RMs for point sources in S-PASS

S-PASS: Parkes / 2.3 GHz / 150 MHz bandwidth (PI: E. Carretti)

Gal. coordinate grid, centred on /=315° Background: Hα intensity (Finkbeiner 2003)

Magnetic field pointing towards us (blue)/away from us (red)

1 source per 4 square degrees


S-PASS covers DEC < 0° , filling the gap below DEC = -40° that is not covered by the NVSS RMs from Taylor+ 2009

RMs for point sources in S-PASS

- 80 hours of ATCA time (March & July) to re-observe 4600 sources
- Improved frequency coverage and sensitivity lead to reliable and accurate RMs; ATCA: 1.3-3.1 GHz, err_RM < 1.5 rad/m²
- Polarized S/N >~ 50 (PI > 5 mJy)
- Higher angular resolution than S-PASS (2' vs. 9'), but poorer than NVSS RMs (45")

Abstract

- sigma_RM (Milky Way) follows the same 1/sin|b| behaviour as the dispersion measures of infinite lines of sight (|b| > 20°)
- sigma_RM(b) ≈ sqrt{(8/sin|b|)² + 6²} rad/m² |b| > 20° (on scales between 1° - 10°, angular resolution ≈ 45″)
- the Galactic foreground, not the intrinsic RMs of the extragalactic sources themselve, dominates the observed RMs
- the extragalactic contribution to sigma_RM is ≈ 6 rad/m² (discrete sources + intergalactic fields)
- sigma_<B₁₁> \leq 0.4 µG (Galactic foreground)

