Magnetic Nanoparticles in the ISM

B. T. Draine Princeton University and Osservatorio Arcetri

- 1. Far-Infrared/Submm Opacities: Model vs. Observed in MW
- 2. Problem: mm-wave Excess in the Small Magellanic Cloud (SMC)
- **3.** Magnetic Fe Nanoparticles in the SMC Dust Population?
- 4. Magnetic Nanoparticles in the Milky Way?
- 5. Polarization

1

Acknowledgements: Brandon Hensley (Princeton grad student)

FIR-Submm Dust Opacity Physical Models; Compare with the Cirrus

100 μm IRAS/COBE Map of Sky (after zodi subtraction). Image credit: D. Finkbeiner Finkbeiner et al. (1999) studied correlation of COBE/FIRAS Submm Map with 100 μm to determine 100 – 2000 μm emission spectrum of cirrus

The DL07 Dust Model

- PAH particles $(25 10^4 \text{ C atoms})$
 - abundance and size distribution to reproduce the "UIR" emission bands $(3.3, 6.2, 7.7, 8.6, 11.3, 12.0, 12.7 \mu m)$
 - account for 2175Å extinction feature ($\pi \rightarrow \pi^*$ electronic excitation of PAHs)
 - rotational emission with spectrum and intensity of observed
 20–60 GHz Anomalous Microwave Emission
- Larger carbonaceous particles (up to $a \approx 0.5 \,\mu{\rm m}$)
 - treat carbonaceous particles as a single population ad-hoc smooth transition from PAH-like to graphite-like
 - account for significant fraction of optical extinction
 - account for most of 2–8 μ m extinction
 - account for \sim 50% of 100–500 μ m opacity
 - For a > 0.01 μm, opacity calculated assuming optical properties of graphite κ ∝ ν² for ν < 1 THz (λ > 300 μm)
 (Draine & Lee 1984; Li & Draine 2001; Draine & Li 2007).
- Amorphous silicate (composition \sim MgFeSiO₄)
 - $-\sim$ 2/3 of dust mass

The "Astrosilicate" Opacity

Comparison with FIR-Submm- μ **wave Observations in MW**

How about Nearby Galaxies? 100 μm IRAS/COBE Map of Sky (after zodi subtraction) Image credit: D. Finkbeiner

The Small Magellanic Cloud (SMC)

Optical (AAO)

Planck 857GHz (Planck Collaboration et al. 2011)

- Interstellar gas less enriched with heavy elements (C, N, O, ..., Fe) SMC $\sim 25\%$ "solar")
- Dust composition differs from Milky Way
 - 2175Å extinction feature: very weak
 - PAH emission: very weak

Dust in the SMC: Excess 50–300 GHz Emission

- Photometry: Israel et al. (2010) and Planck Collaboration et al. (2011)
- $M_{\rm H}(SMC) \approx 4.8 \times 10^8 M_{\odot}$
- $Z(SMC) \approx 0.25 Z_{\odot}$
- $M_{\rm dust,max}(SMC) \approx 1.2 \times 10^6 M_{\odot}$
- After subtracting
 - synchrotron emission
 - free-free (bremstrahhlung)
 - chance upward fluctuation of CMB

Can our dust model + starlight reproduce the observed emission?

- Model with acceptable mass of dust, but severe 50–200 GHz shortfall.
- Spinning dust cannot explain this.
- Dust in SMC is qualitatitively different from MW dust... but in what way?
- At long wavelengths (particle size $\ll \lambda$), it is generally assumed that emission comes from thermal fluctuations in the electric dipole moment.

Perhaps this isn't the only source of emission from dust....

2012.11.26

Magnetic Dipole Emission from Magnetic Dust

(Draine & Lazarian 1999; Draine & Hensley 2012b)

- Suppose much of the Fe is in magnetic material (e.g., metallic Fe, magnetite Fe₃O₄, or maghemite γ-Fe₂O₃)
- Lowest energy state of metallic Fe:
 - spins are parallel (magnetized),
 - magnetization $\vec{\mathbf{M}}$ is aligned with one of the crystal axes
- Excited state: spins parallel, but oriented away from crystal axis

- \bullet Oscillations in magnetization \rightarrow magnetic dipole emission
- Finite temperature \rightarrow thermal magnetic dipole emission

Magnetic Dipole Absorption Cross Section for Fe Nanoparticles (Draine & Hensley 2012b)

- Magnetization dynamics: use Gilbert equation (*not* Landau-Lifshitz eq. or Bloch-Bloembergen eq.)
- Resonance frequency depends on particle shape.
- Absorption depends on uncertain "Gilbert damping parameter" $\alpha_{\rm G}$. $\alpha_{\rm G} \approx 0.2$ may be realistic.

SMC Dust Models With Iron or Magnetite (Fe₃**O**₄) **Nanoparticles** (Draine & Hensley 2012a)

• $M_{\text{dust}} = 8.4 \times 10^5 M_{\odot}$ or $6.4 \times 10^5 M_{\odot} < M_{\text{dust,max}} = 1.2 \times 10^5 M_{\odot}$

- \bullet magnetic dipole emission dominates for $\nu \stackrel{<}{_\sim} 200\,{\rm GHz}$
- spinning dust component:
 - normal spectrum (peaking near 40 GHz)
 - has \sim expected strength (scaled with PAH abundance in SMC)

Metallic Fe Grains in ISM?

- Chemical form of solid-phase Fe in ISM not known fraction in silicates is disputed.
- McDonald et al. (2010): low-metallicity AGB stars in globular clusters sometimes produce dust that is not silicate (IR spectrum is featureless); propose that **Fe metal grains** form in low-metallicity winds.
- Interplanetary dust particles known as "GEMS" contain Fe nanoparticles (Bradley 1994).
- "Inclusion-Rich Rims" on lunar soil grains contain **Fe nanoparticles** (Keller & McKay 1997).
- In lab, olivine irradiated by 2 keV He⁺⁺ develops **Fe nanoparticles** (Loeffler et al. 2009).
- Reasonable to consider that there may be metallic Fe nanoparticles in ISM, either as inclusions or as "free-fliers" (released in shattering events)
- Different conditions in ISM in low-metallicity galaxies could conceivably lead to larger fraction of metallic Fe than in ISM of "normal" galaxies.

We don't really understand grain evolution in ISM, so it's hard to say....

Magnetic Grains in ISM? Observational Tests

X-Ray Absorption

X-ray absorption fine structure could (in principle) identify chemical state of atoms in dust.

Example: Fe L edge (absorption from Fe 2s, 2p). Especially L_2 , L_3 (2p electrons)

Extinction profile depends on chemical state (metal, oxide, silicate) and on grain size (because extinction includes scattering).

Need ~ 1 eV resolution and good S/N: Difficult.

Metallic Fe Grains in ISM? Observational Tests

Polarization

Polarization of emission from silicates with randomly-oriented magnetic inclusions:

At THz frequencies, electric dipole emission polarized with

$$ec{\mathbf{E}}_{\omega}\perpec{\mathbf{B}}_{0}$$

Magnetic dipole contribution is polarized with

$$\vec{\mathbf{B}}_{\omega} \perp \vec{\mathbf{B}}_{0}$$

In ISM, this polarization will be diluted by emission from other components

- Carbonaceous grains
- Spinning dust (20-60 GHz)
- Free-free
- Synchrotron

~30% drop in polarization between 353 and 143 GHz Draine & Hensley (2012a)

Summary

- In normal galaxies: Can successfully model SED using physical dust model with "amorphous silicate", graphitic carbon, and PAHs
- SMC dust appears to be qualitatively different from dust in Milky Way: relatively more emission in 50–300 GHz range
- SMC SED can be explained by magnetic dipole radiation if much of the interstellar Fe in the SMC is in nanoparticles (free-flying or inclusions) of metallic Fe, magnetite Fe₃O₄, or maghemite γ-Fe₂O₃.

This may also be the case for other low-metallicity dwarf galaxies.

- Magnetic grains may also be present in Milky Way some of the $\nu < 350 \,\mathrm{GHz}$ ($\lambda > 850 \,\mu\mathrm{m}$) opacity that has been attributed to "amorphous silicates" may in fact be magnetic dipole absorption (Hensley & Draine 2013, work in progress)
- If magnetic nanoparticles contribute appreciable emission at $\nu < 350 \,\text{GHz}$, polarization will be function of frequency: testable by *Planck*
 - Polarization of the SMC
 - Polarization of the MW cirrus

References

- Aniano, G., et al. 2012, Ap. J., 756, 46
- Bradley, J. P. 1994, Science, 265, 925
- Donovan Meyer, J., et al. 2012, Ap. J., 744, 42
- Draine, B. T., & Fraisse, A. A. 2009, Ap. J., 696, 1
- Draine, B. T., & Hensley, B. 2012a, submitted to ApJ
- —. 2012b, Ap. J., 757, 103
- Draine, B. T., & Lazarian, A. 1999, Ap. J., 512, 740
- Draine, B. T., & Lee, H. M. 1984, Ap. J., 285, 89
- Draine, B. T., & Li, A. 2007, Ap. J., 657, 810
- Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 1999, Ap. J., 524, 867
- Israel, F. P., Wall, W. F., Raban, D., Reach, W. T., Bot, C., Oonk, J. B. R., Ysard, N., & Bernard, J. P. 2010, *Astr: Ap.*, 519, A67
- Keller, L. P., & McKay, D. S. 1997, Geochim. Cosmochim. Acta, 61, 2331
- Lee, J. C. 2010, Sp. Sci. Revs., 157, 93
- Li, A., & Draine, B. T. 2001, Ap. J., 554, 778
- Loeffler, M. J., Dukes, C. A., & Baragiola, R. A. 2009, Journal of Geophysical Research (Planets), 114, 3003
- McDonald, I., Sloan, G. C., Zijlstra, A. A., Matsunaga, N., Matsuura, M., Kraemer, K. E., Bernard-Salas, J., & Markwick, A. J. 2010, *Ap. J. Lett.*, 717, L92
- Meier, D. S., & Turner, J. L. 2004, A.J., 127, 2069
- Planck Collaboration, et al. 2011, Astr. Ap., 536, A17
- Vaillancourt, J. E. 2002, Ap. J. Suppl., 142, 53

 $N_{\rm H} = 10^{21} \,{\rm cm}^{-2} \rightarrow \Sigma_{\rm H} = 10^{0.9} M_{\odot} \,{\rm kpc}^{-2}$ $A_V = \Sigma_{\rm dust} / 10^{3.2} M_{\odot} \,{\rm kpc}^{-2}$ single-pixel detection limit $\Sigma_{\rm dust} \approx 10^{4.75} M_{\odot} \,{\rm pc}^{-2}$, or $A_V \approx 0.4 \,{\rm mag}$

Dust Map and SED for NG6946 @ MIPS160 resolution

(Aniano et al. 2012)

• For each pixel: find best-fit dust model (with $U_{\text{max}} = 10^7$ fixed)

– dust surface density: Σ_{dust}

single-pixel detection limit $\sim 10^{4.75} M_{\odot} \,\mathrm{kpc}^{-2}$ or $A_V \approx 0.4$.

- PAH mass fraction: $q_{\rm PAH}$
- Starlight intensity distribution: U_{\min} , γ , α
- Can reproduce observed SED out to 500 μm with NO "cold" dust

SEDs in Selected Apertures: NGC6946 @ MIPS160 resolution

(Aniano et al. 2012)

Dust-to-Gas Ratio in NGC 6946 at MIPS 160 resolution

(Aniano et al. 2012)

- Low dust/gas ratio within ~2 kpc of center: indication that X_{CO} should be lower near center (Meier & Turner 2004; Donovan Meyer et al. 2012)
- $M_{\rm dust}/M_{\rm H} \approx 0.010 \pm 0.004$ over most of disk
- A few places with high $M_{\rm dust}/M_{\rm H}$ bad data?

Far-Infrared Polarimetry of Star-Forming Molecular Clouds

Unexpected dependence on λ *:*

Predicted Polarization for the DL07 Model

Polarized fraction

from Draine & Fraisse (2009)

- mod1 and mod3: only silicate grains are aligned
- mod2 and mod4: both silicate and graphite grains are aligned

Temperatures of Fe Grains Heated by Starlight

from Draine & Hensley (2012a)

- Fe nanoparticles $a \lesssim 0.03 \,\mu\text{m}$ are heated to $\sim 40 \,\text{K}$ in regions where "normal" grains would have $T \approx 20 \,\text{K}$.
- If present as inclusions, will have same temperature as host.