Estimating the spectral properties of the polarized foregrounds with the Correlated Component Analysis

A. Bonaldi JBCA

The Quest for B-modes

- Single-field inflation predicts r≈0.01 for ns=0.95
- Planck would be able to detect r≈0.1
- B-modes probes:
 - Suborbital experiments:

http//lambda.gsfc.nasa.gov/product/suborbit

- Satellite missions (next generation):
 - CMB-Pol (NASA)cmbpol.uchicago.eduCOrE (ESA)www.core-mission.org

Issue for B-modes: noise (and systematics!)

Issue for B-modes: foregrounds

WMAP

Issue for B-modes: foregrounds

A. Bonaldi JBCA

Component separation

- Source vector s: CMB, synchrotron, dust (AME, free-free, ...)
- One approach: linear combination of frequency maps **x**
 - Needs an estimate of the Mixing Matrix **H**
 - Ideally minimize both foregrounds and noise

Mixing matrix estimation

- Parametrized mixing matrix e.g. CCA (Bonaldi et al. 2006, Ricciardi et al. 2010), Commander (Eriksen et al. 2006), Miramare (Stompor et al. 2009)
 - CMB: blackbody
 - Synchrotron: power-law (parameter β s)
 - Dust: grey-body (parameters βd , Td)
 - AME, free-free,
- Reduce the number of unknowns
- Model dependent

$x = \mathbf{H}s + n$

CCA's Mixing matrix estimation

Using covariance between frequency maps
In the pixel domain (CCA, Bonaldi et al. 2006)

$$C_x(\tau, \psi) = HC_s(\tau, \psi)H^{\mathrm{T}} + C_n(\tau, \psi).$$

- In the Fourier domain (HCCA, Ricciardi et al. 2010)

$$\widetilde{C}_{x} = \widetilde{B}H\widetilde{C}_{s}H^{\mathrm{T}}\widetilde{B}^{\dagger} + \widetilde{C}_{n},$$

CCA's Mixing matrix estimation

- Estimation on high resolution Q and U maps
- Process sky patches for spatial variability of β s, β d
- Not a pixel-by-pixel estimation!
 - Low resolution spectral index maps
 - Good performance with high noise/multiple components
- The output is used to compute suitable linear mixture W
- Errors on the mixing matrix are propagated to maps and power spectra

Mon. Not. R. Astron. Soc. (2010)

Correlated component analysis for diffuse component separation with error estimation on simulated *Planck* polarization data

S. Ricciardi,^{1*} A. Bonaldi,² P. Natoli,^{3,4} G. Polenta,^{5,6} C. Baccigalupi,⁷ E. Salerno,⁸ K. Kayabol,⁸ L. Bedini⁸ and G. De Zotti^{2,7}

- Simulated Planck data
- Pixel-domain and harmonic-domain CCA
- Errors on spectral indices (mixing matrix)
- Errors propagation to separated components and power spectra
- Assessment of comp sep errors and noise errors

Latest results on simulated Planck

Latest results on simulated Planck

Combined foreground and noise forecaster

- Given the linear mixture component separation (with matrix W) we forecast B-mode detection
- Instrumental noise and residual foreground residuals
- Noise error:

Combined foreground and noise forecaster

• The map of the foreground residuals error:

$$(WH - I)s$$

- Power spectrum of the residuals is computed out of a Galactic mask
- **s, H** = sky model
- W from estimated H: the foreground error increases with the mismatch between true and estimated H

Forecasts for Planck (Bonaldi & Ricciardi 2011)

Forecasts for COrE (Bonaldi & Ricciardi 2011)

Conclusions

- Component separation important for polarization
 - Crucial for B-modes
 - Next generation probes will be foreground dominated
- Accuracy depends on the knowledge of the mixing matrix
- The CCA estimates the mixing matrix
 - Patch-by-patch estimation
 - Pixel and Fourier domain
 - Fully tested for Planck
- Several cleaning methods based on mixing matrix
 - GLS
 - Template subtraction