Primordial Inflation Explorer (PIXIE)

Al Kogut Goddard Space Flight Center

Primordial Inflation Explorer

Name	Role	Institution
A. Kogut	PI	GSFC
D. Fixsen	IS	UMD
D. Chuss	Co-l	GSFC
J. Dotson	Co-l	ARC
E. Dwek	Co-I	GSFC
M. Halpern	Co-I	UBC
G. Hinshaw	Co-I	UBC
S. Meyer	Co-l	U. Chicago
H. Moseley	Co-I	GSFC
M. Seiffert	Co-I	JPL
D. Spergel	Co-I	Princeton
E. Wollack	Co-I	GSFC

Measure B-Mode Polarization

To Limits Imposed By Astrophysical and Cosmological Foregrounds

Optical Design for CMB

Conventional Focal Plane

Single-Moded Pixel

Optical Design for CMB

Conventional Focal Plane

Photon Limit: Add Detectors

Optical Design for CMB

Problem: Getting enough sensitivity in enough frequency bands requires ~10,000 background-limited detectors!

PIXIE Optical Solution

PIXIE Optical Solution

PIXIE Nulling Polarimeter

Measured Fringe Pattern Samples Frequency Spectrum of Polarized Sky Emission

$$P_{Lx} = \frac{1}{2} \int \left(E_{Ay}^{2} + E_{Bx}^{2} \right) + \left(E_{Bx}^{2} - E_{Ay}^{2} \right) \cos(z\omega/c) \, d\omega$$
$$P_{Ly} = \frac{1}{2} \int \left(E_{Ax}^{2} + E_{By}^{2} \right) + \left(E_{By}^{2} - E_{Ax}^{2} \right) \cos(z\omega/c) \, d\omega$$

Stokes Q

Nulling Polarimeter: Zero = Zero

Kogut et al. 2011, JCAP, 7, 025 Kogut et al. 2011, SPIE, 7731, 77311S

PIXIE Non-Imaging Optics

44,000 modes on 4 detectors

Parameter	Value
Primary Mirror Diam	550 mm
Etendu	4 cm ² sr
Beam Diam	2.6° Tophat
Throughput	82%

Instrument and Observatory

PIXIE Mission Concept

Full-Sky Maps in Stokes IQU in 400 Channels 30 GHz to 6 THz

PIXIE B-Mode Science

Measure r < 0.001 at 5σ (after foreground subtraction)

Design Trades (No Free Lunch)

PIXIE Multi-Moded Optics

Penalties

Concentrator vs Focal Plane Array Angular Resolution (x6 at 2 mm)

FTS vs Bandpass Filters Noise (x2)

Advantages

Fewer Detectors (x1000) More Frequency Channels (x25) Broader Frequency Range (x8) Smaller Cold Area (x500)

Single-Moded Focal Plane

B-Mode Fundamentals

Signal is faint Foregrounds are bright Everything is confusing

Requirements for B-Mode Detection

- Sensitivity
- Foreground Subtraction
- Systematic Error Control

Sensitivity: Background Limit the Easy Way

Big Detectors in Multi-Moded Light Bucket

$$NEP_{photon}^{2} = \frac{2A\Omega}{c^{2}} \frac{(kT)^{5}}{h^{3}} \int \alpha \epsilon f \frac{x^{4}}{e^{x} - 1} \left(1 + \frac{\alpha \epsilon f}{e^{x} - 1} \right) dx$$
Photon noise ~ $(A\Omega)^{1/2}$
Big detector: Negligible phonon noise
 $\delta I_{\nu} = \frac{\delta P}{A\Omega \ \Delta \nu \ (\alpha \epsilon f)}$
Signal ~ $(A\Omega)$
Big detector: S/N improves as $(A\Omega)^{1/2}$

30x collecting area as Planck bolometers

PIXIE polarization-sensitive bolometer

Parameter	Units	Calibrator Deployed	Calibrator Stowed
Stokes I (per bin)	W m ⁻² sr ⁻¹ Hz ⁻¹	2.4 x 10 ⁻²²	
Stokes Q (per bin)	W m ⁻² sr ⁻¹ Hz ⁻¹	3.4 x 10 ⁻²²	0.5 x 10 ⁻²²
NET (CMB)	μK s ^{-1/2}	13.6	
NEQ (CMB)	μK s ^{-1/2}	19.2	5.6

PIXIE: $A\Omega = 4 \text{ cm}^2 \text{ sr}$

Sensitivity 70 nK per 1° x 1° pixel

Systematics: Error Control The Easy Way Multiple Instrumental Symmetries

Multiple Redundant Symmetries Allow Clean Instrument Signature

Systematic Error Budget

Efficient suppression of potential systematic errors

Symmetry	Mitigates
x vs y Polarization	Beam/pointing
Left vs Right Detector	Beam/pointing
A vs B Beam	Differential loss
Real vs Imaginary FFT	1/f noise, relative gain

R

Detectors

Α

$$P_{Lx} = \frac{1}{2} \int \left(E_{Ay}^{2} + E_{Bx}^{2} \right) + \left(E_{Bx}^{2} - E_{Ay}^{2} \right) \cos(z\omega/c) \, d\omega$$
$$P_{Ly} = \frac{1}{2} \int \left(E_{Ax}^{2} + E_{By}^{2} \right) + \left(E_{By}^{2} - E_{Ax}^{2} \right) \cos(z\omega/c) \, d\omega$$
$$P_{Rx} = \frac{1}{2} \int \left(E_{Ax}^{2} + E_{By}^{2} \right) + \left(E_{Ax}^{2} - E_{By}^{2} \right) \cos(z\omega/c) \, d\omega$$
$$P_{Ry} = \frac{1}{2} \int \left(E_{Ay}^{2} + E_{Bx}^{2} \right) + \left(E_{Ay}^{2} - E_{By}^{2} \right) \cos(z\omega/c) \, d\omega$$

F#c.ch	Leakage	PIXIE Mitigation				Residual		
Επεςτ		FTS	Spin	Orbit	XCal	Symmetry	Preflight	(nK)
Cross-polar beam	E→B		\checkmark			\checkmark	\checkmark	1.5
Beam ellipticity	$\nabla^2 T \rightarrow TB$		\checkmark	\checkmark		\checkmark	\checkmark	2.7
Polarized sidelobes	ΔT→B		\checkmark	\checkmark		\checkmark	\checkmark	1.1
Instrumental polarization	ΔT→B		\checkmark	\checkmark		\checkmark	\checkmark	<0.1
Polarization angle	E→B			\checkmark			\checkmark	0.7
Beam offset	ΔT→B			\checkmark		\checkmark	\checkmark	0.7
Relative gain	ΔT→B					\checkmark		<0.1
Gain drift	T→B	\checkmark				\checkmark		<0.1
Spin-synchronous emission	ΔT→B	\checkmark	\checkmark			\checkmark	\checkmark	<0.1
Spin-synchronous drift	T→B	\checkmark			\checkmark		\checkmark	<0.1

PIXIE Beam Pattern

Foregrounds: Multiple Channels the Easy Way

Fourier Transform Spectrometer

Pixel-by-pixel foreground subtraction 400 effective channels to fit ~15 free parameters Spectral index uncertainty ±0.001 in each pixel Continuum spectra: curvature, multiple components, ...

Only 2% "noise penalty" for foreground subtraction

Frequency Spectrum vs Fringe Pattern

Largest optical phase delay (1 cm) sets channel width Number of samples (1024) sets number of channels Apodization sets channel bandpass

PIXIE: 512 channels each 15 GHz wide Lowest effective channel = 30 GHz (1 cm)

Synthesized Channels:

Synthesized Channels:

Synthesized Channels:

Synthesized Channels:

Synthesized Channels:

Synthesized Channels:

Synthesized Channels:

Synthesized Channels:

10 bands 30 GHz through 200 GHz ...

FTS gets extra bands for free: why not use them?

Foreground Science: Interstellar Dust

Science from high-frequency channels informs low-frequency fitting

Dust Parameters (Modified Greybody)

Polarization depends on composition

- Silicate: Colder, More polarized
- Carbonaceous: Warmer, Less polarized

Sensitive probe of dust composition

PIXIE data from 30 GHz to 6 THz

- Temperature(s)
- Fractional polarization
- Chemical composition

Constrain dust properties for each line of sight

Hildebrand & Kirby 2004

PIXIE and Interstellar Medium

Extremely Rich Data Set!

Parametric Dust Models A Cautionary Tale

Empirical fits show correlation between T and β Greybody model, pixel-to-pixel variation

Liang et al. 2012, arXiv:1201.0060

Solid-state model of disordered medium Two-level system predicts variation in β

- Steeper β for colder T at fixed frequency
- Flatter β for lower freq at fixed temperature

Meny et al. 2007, A&A, 468, 171 Paradis et al. 2011, A&A, 534, A118 Paradis et al. 2012, A&A, 537, A113

Is either model the correct description? How can we tell?

A Tale Of Two Models

Input Sky: CMB + Dust (either FDS or TLS) + Noise 9 EPIC Channels (30, 45, 70, 100, 150, 220, 340, 500, 850 GHz)

Fit 8 parameters to 18 maps using FDS model

- CMB amplitude (Q and U)
- Cold dust amplitude (Q and U) and spectral index
- Warm dust amplitude (Q and U) and spectral index

Compare Output to Input CMB Maps

A Tale Of Two Models

Input Sky: CMB + Dust (either FDS or TLS) + Noise 9 EPIC Channels (30, 45, 70, 100, 150, 220, 340, 500, 850 GHz)

Fit 8 parameters to 18 maps using FDS model

- CMB amplitude (Q and U)
- Cold dust amplitude (Q and U) and spectral index
- Warm dust amplitude (Q and U) and spectral index

Compare Output to Input CMB Maps

Same χ^2 But Different C₁: Worst-Case Scenario!

The Problem With Parametric Models

Solution:

Don't try to think more about the same data,

Think about getting more data!

With seven free parameters, you can fit a charging rhino.

PIXIE vs Dust Models

400 frequency channels from 30 GHz to 6 THz

- Distinguish FDS from TLS emission model
- Determine correct parametric model
- Use THz data to inform low-freq CMB fit

Get channels almost for free

- Longest mirror stroke sets channel width
- Sampling rate sets number of channels
- No messy focal plane allocations

PIXIE Foreground Capability

Full-Sky Spectro-Polarimetric Survey

- 400 frequency channels, 30 GHz to 6 THz
- Stokes I, Q, U parameters
- 49152 sky pixels each $0.9^{\circ} \times 0.9^{\circ}$
- Pixel sensitivity 6 x 10⁻²⁶ W m⁻² sr⁻¹ Hz⁻¹
- CMB sensitivity 70 nk RMS per pixel

Number of channels >> Fitted parameters

- Model physics of foreground emission
- Synchrotron and dust spectral curvature
- Dust spectral index ±0.001 within each pixel
- FDS vs TLS emission spectra

If you can't remove foregrounds with PIXIE, it probably can't be done at all

NASA Explorer Program

Small PI-led missions

• \$200M Cost Cap + launch vehicle 22 full missions proposed Feb 2011

PIXIE not selected; urged to re-propose

- Category I Science rating
- Broad recognition of science appeal

"PIXIE's spectral measurements alone justify the program" -- NASA review panel

Gloomy budget realities: Best shot at inflationary physics?

Primordial Inflation Explorer (PIXIE)

Principal Investigator: Dr. Alan Kogut (NASA's GSFC)

NASA's Goddard Space Flight Center Ball Aerospace & Technologies Corporation

> Authorizing Official: Bonnie G. Norris, Chief New Opportunities Office (NASA's GSFC)

> > February 16, 2011

Coming Soon From a Spacecraft Near You!

Backup Slides

PIXIE vs Cosmic Rays

PIXIE detectors 30x Planck area But ...

- Anchor silicon frame to 100 mK bath
- Crystalline silicon for fast time constant
- No on-board lossy compression
- Higher NEP \rightarrow Higher threshold
- Fast (1 second) interferogram scans

Scale from FIRAS, Astro-E, Planck

- Astro-E: 0.3 hits /sec on 11 mm²
- PIXIE: 0.5 hits / sec on 17 mm²
- Data loss < 0.5%

Systematic Error from Asymmetries

Systematic Error from Asymmetries

PIXIE Fourier Transform

Phase delay L sets channel width $\Delta v = c/L$

Number of samples sets frequency range N_chan = N_samp / 2

PIXIE: ~400 usable channels $\Delta v = 15 \text{ GHz}$ 30 GHz to 6 THz (1 cm to 50 µm)

Vary stroke length to apodize Fourier transform

Cryogenics

J-T Cold Head (4.5 K)

Thermal Lift Budget

Cooler Stage	Stag e Temp (K)	CBE Loads (mW)	Derated Capability (mW)	Contingency & Margin
Stirling (Upper)	68	2362	4613	95%
Stirling (Lower)	17	132	278	111%
Joule- Thomson	4.5	20	40	100%
ADR	2.6	6	12	100%
ADR	0.1	0.0014	0.03	2043%

Polarization-Sensitive Detectors

Parameter	Design	
Area	160 mm ²	
Fill Fraction	11%	
Frame Temperature	100 mK	
Absorber Temperature	140 mK	
	Requirement	Performance
NEP (W Hz ^{-1/2})	<10-16	0.7 x 10 ⁻¹⁶
Time Constant (ms)	<4	1
Cross-Pol at 150 GHz	<1%	0.1%

Mirror Transport Mechanism

Engineering prototype

Demonstrated performance exceeds requirement by factor of ten

Translate ±2.54 mm at 0.5 Hz Optical phase delay ±1 cm Repeatable cryogenic position

Blackbody Calibrator

External Calibrator

External Calibrator

External Calibrator

Mission Operations

PIXIE Samples Cosmic History

* Specifically called out in Astro-2010 Decadal Survey

Primary Science: Inflation

GUT-Scale Physics: $r < 10^{-3}$ at 5σ

- Detect ~all large-field models
- Power spectrum to I~100
- Reach limit of lensing foreground

Planck-Scale Physics: Map B-Mode Polarization

- Consistency relation r = -6.2 n_t
- Statistics of B-mode polarization field

Secondary Science: Inflation

Silk damping of primordial perturbations

- Scalar index $n_{\rm s}$ and running dln $n_{\rm s}/dln$ k
- Physical scale ~1 kpc (1 $M_{\odot})$

Daly 1991 Hu, Scott, & Silk 1994 Khatri, Sunyaev, & Chluba 2011

Blackbody calibrator: Spectral distortions

Chemical potential $\mu = 1.4 \frac{\Delta E}{E}$

Energy release at $10^6 < z < 10^8$

PIXIE limit $\mu < 10^{-8}$

Secondary Science: Dark Matter Blackbody distortion from dark matter decay or annihilation

Secondary Science: Reionization

Same scattering for both signals: Combine to get n(z) and T_e

- T_e probes ionizing spectrum
- Distinguish Pop III, Pop II, AGN

Determine nature of first luminous objects

Polarization: Optical depth ~ Electron density n(z)Angular scale $\leftarrow \rightarrow$ Horizon at redshift z Spectrum: y distortion ~ Electron pressure \int $nkT_{e} \cdot PIXIE limit y < 5 x 10^{-9}$ • Distortion must be present at $y \sim 10^{-7}$ Frequency (GHz) 100 500 600 0 200 30040030 sr^{-1} 1 x 10⁻ y =20 Hz⁻¹ 10

Hu & Holder 2003

Secondary Science: Cosmic Infrared Background

PIXIE noise is down here!

Knox et al. 2001 Fixsen & Kashlinsky 2011

PIXIE Technology

Technologically Mature Implementation

Parameter	Design	
Area	160 mm ²	
Fill Fraction	11%	
Frame Temperature	100 mK	
Absorber Temperature	140 mK	
	Requirement	Performance
NEP (W Hz ^{-1/2})	<10-16	0.7 x 10 ⁻¹⁶
Time Constant (ms)	<4	1
Cross-Pol at 150 GHz	<1%	0.1%

Instrument Cryogenics

Cooler Stage	Stage Temp (K)	CBE Loads (mW)	Derated Capability (mW)	Contingency & Margin (%)
Stirling (Upper Stage)	68	2362	4613	95%
Stirling (Lower Stage)	17	132	278	111%
Joule-Thomson	4.5	20	40	100%
iADR	2.6	6	12	100%
dADR	0.1	0.0014	0.03	2043%

Fully cryogenic instrument

Cryo-cooler to 4.5 K ADR to 2.7 K (instrument body) ADR to 0.1 K (detectors)

Active + Passive Cooling

Cryo-cooler + ADR Radiator cools shields & compressor No view to Sun or Earth

Active control of cryogenic temps

Instrument bus ~ 2.6 K Individual PID control of optical elements ADR entropy reserve

Observatory

