

A framework for performance forecasting of the parametric component separation in the presence of systematic effects

Clara Vergès

AstroParticle and Cosmology/Université de Paris

B-mode from space workshop MPA, 16-19 December 2019

C.Vergès et al, 2019, in prep.

Component separation

Main steps

- Measurement in several frequency bands
- Estimation of components spectral parameters
- Removal of non-CMB components
- Estimation of residuals

→ How frequency-dependent instrumental effects affect component separation?

→What are the calibration and precision requirements for hardware parameters?

Context

New generation of CMB polarisation experiments

Increased sensitivity \rightarrow increased complexity \rightarrow need better mitigation of instrumental effects

Updated by J. Errard C. Vergès - B-mode from space workshop - 3

Instrument model

Monochromatic, single layer HWP

$$\begin{split} \mathbf{M}_{\text{layer}} &\equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \delta & -\sin \delta \\ 0 & 0 & \sin \delta & \cos \delta \end{pmatrix} \\ \delta &\equiv \frac{2\pi \theta_{\text{hwp}} |n_o - n_e|\nu}{c} \\ \mathbf{M}_{\text{monochromatic}} &\equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \end{split}$$

Time domain data model

 $\mathbf{d}_t(\nu) = \mathbf{I}(\boldsymbol{\gamma}(t), \nu) + \cos(4\varphi_t) \mathbf{Q}(\boldsymbol{\gamma}(t), \nu) + \sin(4\varphi_t) \mathbf{U}(\boldsymbol{\gamma}(t), \nu)$

Map-making

 $cos(4\phi)$ modulated term $\rightarrow Q$ $sin(4\phi)$ modulated term $\rightarrow U$

Broadband, multi layer HWP

 $\mathbf{M}_{\text{HWP}} = \mathbf{M}_{\text{layer}}(\theta) \mathbf{R}(-\alpha_2) \mathbf{M}_{\text{layer}}(\theta) \mathbf{R}(\alpha_2) \mathbf{M}_{\text{layer}}(\theta)$

(e.g. Bao et al, 2011, Komatsu et al, 2019)

Antenna with frequency dependent polarisation angle = **wobble angle** (*Suzuki, 2013*)

 $\mathbf{M} = \mathbf{M}_{\text{antenna}} \mathbf{R}(-2\varphi_t) \mathbf{M}_{\text{HWP}} \mathbf{R}(2\varphi_t)$ $\mathbf{d}_t(\nu) = \mathbf{M}_{00}(\nu) \mathbf{I}(\boldsymbol{\gamma}(t), \nu) + \mathbf{M}_{01}(\nu, \varphi_t) \mathbf{Q}(\boldsymbol{\gamma}(t), \nu) + \mathbf{M}_{02}(\nu, \varphi_t) \mathbf{U}(\boldsymbol{\gamma}(t), \nu)$

C. Vergès - B-mode from space workshop - 4

Bandpass integration

Single layer HWP

$$\mathbf{M}_{\text{layer}} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \delta & -\sin \delta \\ 0 & 0 & \sin \delta & \cos \delta \end{pmatrix} \delta \equiv \frac{2\pi \theta_{\text{hwp}} |n_o - n_e|\nu}{c}$$

Time domain data model

$$\mathbf{d}_{t}(\nu) = \int_{\nu_{0}}^{\nu_{1}} BP(\nu) \mathbf{I}(\boldsymbol{\gamma}(t), \nu) + \cos(4\varphi_{t}) \int_{\nu_{0}}^{\nu_{1}} BP(\nu) C_{Q}(\delta) \mathbf{Q}(\boldsymbol{\gamma}(t), \nu) + \sin(4\varphi_{t}) \int_{\nu_{0}}^{\nu_{1}} BP(\nu) C_{U}(\delta) \mathbf{U}(\boldsymbol{\gamma}(t), \nu)$$

+ sky only modulated terms

Multi-layer HWP + sinuous antennas

$$\mathbf{M} = \mathbf{M}_{\text{antenna}} \mathbf{R}(-2\varphi_t) \mathbf{M}_{\text{HWP}} \mathbf{R}(2\varphi_t)$$

Wobble parameters (amplitude and phase) HWP parameters (layer angle and thickness) $\mathbf{d}_{t}(\nu) = \int_{\nu_{0}}^{\nu_{1}} BP(\nu) I(\boldsymbol{\gamma}(t), \nu) + \cos(4\varphi_{t}) \int_{\nu_{0}}^{\nu_{1}} BP(\nu) \Big[C_{Q}(\delta) Q(\boldsymbol{\gamma}(t), \nu) + C_{U}(\delta) U(\boldsymbol{\gamma}(t), \nu) \Big] + \sin(4\varphi_{t}) \int_{\nu_{0}}^{\nu_{1}} BP(\nu) \Big[S_{Q}(\delta) Q(\boldsymbol{\gamma}(t), \nu) + S_{U}(\delta) U(\boldsymbol{\gamma}(t), \nu) \Big] + \text{sky only modulated terms}$

→introduce leakage term/phase?

need to make assumption on the spectral and hardware parameters to define a phase, prior to component separation and map-making

→ potential bias on recovered frequency maps and parameters
→ can not account for spatial varying foregrounds parameters

Effective Stokes components

We rewrite the data model, based on modulation order...

$$\begin{split} \bar{\mathbf{d}}_{t}(\nu_{c}) &\equiv \mathbf{n}_{t} + \sum_{\substack{\text{compserve}, \\ \text{dust,sync}}} \bar{\mathbf{M}}_{00}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{I}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) \\ &+ \sum_{\substack{\text{compserve}, \\ \text{dust,sync}}} \left[\bar{\mathbf{C}}_{01;0}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{Q}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) + \bar{\mathbf{C}}_{02;0}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{U}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) \right] \times \cos 2\psi_{t} \\ &+ \sum_{\substack{\text{compserve}, \\ \text{dust,sync}}} \left[\bar{\mathbf{S}}_{01;0}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{Q}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) + \bar{\mathbf{S}}_{02;0}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{U}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) \right] \times \sin 2\psi_{t} \\ &+ \sum_{\substack{\text{compserve}, \\ \text{dust,sync}}} \left[\bar{\mathbf{C}}_{01;4}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{Q}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) + \bar{\mathbf{C}}_{02;4}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{U}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) \right] \times \cos(4\phi_{t} + 2\psi_{t}) \\ &+ \sum_{\substack{\text{compserve}, \\ \text{dust,sync}}} \left[\bar{\mathbf{S}}_{01;4}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{Q}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) + \bar{\mathbf{S}}_{02;4}^{\text{comp}}(\nu_{c},\nu_{0}) \, \mathbf{U}_{\text{comp}}(\boldsymbol{\gamma}(t),\nu_{0}) \right] \times \sin(4\phi_{t} + 2\psi_{t}) \\ \end{split}$$

HWP and sky modulated

The HWP linearly mixes Stokes components, and this mixing must be included in a generalised component mixing matrix

Effective Stokes components

... and define effective Stokes components

Linear combination of Q and U

Coefficients → depend on HWP, bandpasses, antennas and spectral parameters

Output of map-making are NOT Q and U maps

 \rightarrow take this into account in the component separation process

C. Vergès - B-mode from space workshop - 7

Generalised data model

Standard approach

xTending xForecast

Errard et al, 2012, Stompor et al, 2016

Goal = Estimate residuals and *r* from foreground templates and a given instrumental configuration (frequency bands, noise levels)

Standard approach

- Only foregrounds are parametrised
- Parameters are foregrounds specific
- No Q and U mixing
- Average over noise realisations

Generalisation

- Spectral parameters + hardware parameters
- Hardware parameters are **global**
- **CMB scaling** is parametrised
- Q and U are mixed into newly defined effective Stokes components
- **Priors** on hardware parameters
- Parametric bandpass integration
- Average over **noise + CMB realisations**

Standard mixing matrix

$$A(\beta_d, T_d, \beta_s)$$

Generalised mixing matrix (single frequency)

$$\begin{bmatrix} \bar{\mathbf{C}}_{01;0} & \bar{\mathbf{C}}_{02;0} \\ \bar{\mathbf{S}}_{01;0} & \bar{\mathbf{S}}_{02;0} \\ \bar{\mathbf{C}}_{01;4} & \bar{\mathbf{C}}_{02;4} \\ \bar{\mathbf{S}}_{01;4} & \bar{\mathbf{S}}_{02;4} \end{bmatrix} A(\beta_d, T_d, \beta_s)$$

Framework Pipeline

Test case

As a test case, we model the hardware configuration based on the three Small Aperture Telescopes (SATs) of the Simons Observatory (The Simons Observatory: Science Goals and Forecasts, 2018)

Assumed hardware configuration

- 6 frequency bands in 3 dichroic focal planes: {30 and 40 GHz}, {90 and 150 GHz}, {225 and 280 GHz}
- 3-layer achromatic HWP parameters
 - Angle of the central layer
 - Thickness of the layer
- Sinuous antennas

Other assumptions

- T_dust = 19.6K
- White noise only
- Perfectly known bandpasses
- Perfectly known wobble

Conclusion & future steps

Need for accurate instrument model and accurate measurements of instrumental parameters

- Avoid bias in the component separation process
- As important as foreground model

I developed, implemented and demonstrated an end-to-end component separation framework incorporating instrumental effects

- Generalised data model including parametric bandpasses
- Component separation techniques accounting for systematic effects
- Flexible framework than can accommodate more complex models (for HWP or other elements)

To do list

- Go beyond the assumption that bandpasses and wobble are known, and estimate these parameters as well
- Introduce priors and determine the precision we need for calibration
- Study the performance of the method for realistic calibration strategies
- Implement the framework for use in publicly available component separation codes

... and more exciting features to come! Stay tuned for the paper ;)