Development of space compatible Polarization Modulator

Yuki Sakurai (Kavli IPMU, The University of Tokyo) and LiteBIRD PMU development team

B-mode from space 2019 at Munich Dec. 19, 2019

World Premier International Research Center Initiative

研究拠点形成事業 Core-to-Core Program

What is polarization modulator?

1. 1/f noise rejection

- ✓ Atmospheric noise, ground pickup
- ✓ Detector / electrical noise
- ✓ Long term instabilities

2. Systematics mitigation

- ✓ Differential beam pointing, ellipticity
- ✓ Differential gain

Modulation techniques

There are various polarization modulation techniques:

- 1. Phase switch: WMAP, CAPMAP, QUIET...
 - Modulation by switching the path length half-phase shifted
- 2. Faraday rotation modulator (FRM): BICEP1
 - Modulation using ferrite and coil by Faraday effect
- 3. Half-wave plate (HWP): MAXIPOL, EBEX, SA, SO, ACTPol, NIKA, LSPE/SWIPE, LiteBIRD...
 - Modulation by rotating HWP

Install at front or rear of focal plane Each pixel

Install at aperture or within optical system Entire focal plane

4. Variable-delay polarization modulator: PIPER, CLASS

QUIET Collaboration et al. (2011)

S. Moyerman et. al. (2013)

A. Kusaka et. al. (2014)

Do we need polarization modulator for LiteBIRD?

Pros	Cons
1/f noise rejection Systematics mitigation	HWP systematics Sensitivity effect System risk

- LiteBIRD $f_{scan} = 0.05 0.1$ rpm
- Do we have any guarantee for 1/f noise?
- 1/f is the main driver → continuously rotating HWP
- ABS, POLARBEAR successfully demonstrated fknee ~2mHz.
- Concerns depend on hardware and calibration.

HWP systematics

Hardware development directly connects to systematics due to HWP imperfection

- HWP non-uniformity \rightarrow AR and AHWP development
- Multiple reflections → AR development
- HWP phase freq. dependence \rightarrow AHWP design optimization
- Beam effect through HWP → AR and AHWP development
- HWP temperature stability \rightarrow rot. mech. thermal characteristics
- HWP wobbling \rightarrow rot. mech. misalignment
- Angle reconstruction accuracy \rightarrow encoder
- ...

HWP hardware development is key to achieve LiteBIRD full success

Continuously rotating HWP history

MAXIPOL (balloon)

- First CMB experiment using rotating HWP
- EBEX (balloon)
 - First experiment using cold rotating HWP with superconducting magnetic bearing
- ABS (ground)
 - First ground experiment with warm rotating HWP

Simons Array, Simons Observatory SAT (ground)

• First ground experiment with cold rotating HWP

LSPE/SWIPE (balloon)

- Balloon experiment with cold rotating HWP
- LiteBIRD (satellite)
 - Satellite mission with cold rotating HWP

J. Klein et. al. Proc. SPIE 8150 (2011)

A. Kusaka et. al.(2013)

HWP materials

Sapphire

- Birefringence single crystal material
- Maximum diameter \leq 500mm
- Need anti-reflection (AR) due to refractive index ~3.3
- Broadband of pol. eff. and phase difference are proportional to number of layer ≈ mass
- MAXIPOL, EBEX, SPIDER, ABS, SA, SO, LiteBIRD LFT

Metal-mesh HWP

- Based on metal-mesh filter technology
- Stack capacitive and inductive structure
- Bandwidth 3:1
- NIKA, ASTE, LSPE/SWIPE, LiteBIRD MHFT
- Reflective metal-mesh HWP is considered as backup solution.

G. Pisano et al. in press in PIER M (2012)

Toward satellite application

Higher science goal

- Wider frequency band
- Lower HWP temperature
- Reducing HWP imperfection

Space specific environment

- Launch tolerance
- Cosmic ray
- No gravity

Resource limitation

- Cooling power
- Mass
- Volume ...

System reliability

- Risk management
- Redundancy
- Emergency operation

Polarization modulation unit (PMU) for LiteBIRD low frequency telescope (LFT)

LiteBIRD overview

Two telescopes : LFT (34 - 161GHz), MHFT (89 - 448GHz) Focal plane unit : >4000 superconducting detector (TES) array Scan strategy : L2 precession 45 deg. (10^{-2} - 10^{-3} rpm), spin 50 deg. (0.05-0.1 rpm) Cooling chain : V-groove $\rightarrow 20$ K-2ST $\rightarrow 4.8$ K-JT $\rightarrow 1.75$ K ADR $\rightarrow 300/100$ mK ADR Continuous rotating half-wave plate at the aperture of LFT and MHFT

Representative requirements

Items	Requirement (LFT)
Frequency band	34 GHz - 161 GHz
Transmittance	> 98% (depend on freq.)
Polarization efficiency	> 98% (depend on freq.)
Rotation frequency	0.8 Hz (48 RPM)
HWP diameter	> ~ 480 mm
HWP temperature	< 20 K
Total heat dissipation	< 4 mW
Mass	< 30 kg
Encoder specification	< 0.2 arcmin

- ✓ The requirement values are not yet fixed because the detail system design and the trade-off study are in progress.
- ✓ Main development items are broadband achromatic HWP and a cryogenic rotation mechanism.

Current design of LiteBIRD LFT PMU

Development roadmap

Broadband anti-reflection structure

- Broadband antireflection (34-161GHz): moth-eye based sub-wavelength structure by laser machining
- Fabricated Φ70mm small sample with height 2.34mm, pitch 0.54mm (~4:1)
- > 90% transmittance with good agreement between data and simulation
- The expected processing time for Φ=450mm is < 1 month using 40W femto-second pulsed laser

Ryota Takaku (U. Tokyo)

Sapphire AHWP development

- ✓ Single sapphire plate has pol. eff. $\varepsilon = 1$ for the only single frequency.
- We adopt Achromatic HWP (AHWP) consists of multi-stacked sapphire with the different optic axis for each HWP.
- ✓ We optimize the AHWP design with 5 layer to cover 34-161GHz.

Kunimoto Komatsu (Okayama U.)

K. Komatsu et al. (2019)

Prediction of each five-layer design (w/o reflection effect)

Rotation mechanism

- All components at 5 K stage
- Heat dissipation < 4 mW due to cooling power
- Rotor (HWP) must be operated < 20 K to reduce thermal emission

Stable continuous rotation at cryogenic temperature with small heat dissipation

Breadboard model (Φ=380mm)

- Superconducting magnetic bearing Rotor: SmCo magnets + yoke for uniformity Stator: YBCO (Tc < 95 K)
- DC brushless motor with speed feedback control measured by optical encoder
- 3 grippers actuated by linear actuators (stepping motors)

Rotation mechanism

Thermal characteristics

- Total heat dissipation \leq 4.0 mW
- Rotor heat dissipation ≤ 1.0 mW from thermal simulation
- Heat sources are hysteresis loss, eddy current due to magnet inhomogeneity ΔB

$$P_h \propto k_h f \frac{\Delta B^3}{J_c}, P_e \propto k_e f^2 \Delta B^2$$

- Total loss at nominal rotation speed (46 rpm) is ~10 mW, dominated by eddy current loss
- There is much room for improvement.
 - de-metallization, reduce weight ...
 - Uniform magnet with yoke

Yoshiki Nomura (Saitama U.)

Angular encoding

- HWP angle reconstructed by incremental encoder consists of LED and Si photodiode
- Calibrate bias component (not change with each rotation).
- The angular error (random component changed per rotation) is calculated as < 0.2 arcmin.

Shinya Sugiyama (Saitama U.)

Encoder

B-mode from space 2019 @ Munich

5*ρ*[arcmin]

Other activities toward flight model

- Cosmic ray effect: radiation damage, heat input, charging
- AHWP gluing and holder design for launch tolerance.
- System optimization including baffle and stop
- Fault tree analysis (FTA) to identify critical risks and components required redundancy.
- Development of low loss cryogenic motor
- Cryogenic optical measurement system
- Small integrated test system of TES and HWP

Sapphire Gluing (KAGURA)

4K CM cryostat @ Kavli IPMU

Summary

- Polarization modulator helps to reject 1/f noise and systematics.
- Continuously rotating HWP is employed to LiteBIRD with the main driver as 1/f noise.
- ✓ We presented the development status of LiteBIRD LFT PMU.
- Optical performance of AR and AHWP is successfully demonstrated by small samples.
- ✓ Cryogenic performance test of BBM rotation mechanism is in progress toward flight model.

Otsukare!

