Foreground challenges for measurements of spectral distortions

Aditya Rotti Jodrell Bank Centre for Astrophysics University of Manchester

B-modes from Space, MPA, Munich 18 December 2019

Take away

- A first demonstration of recovery of average sky signals using moments and ILC methods
- High precision modeling of foregrounds → *CRITICAL*
- Partially modeling out foregrounds (semi-blind) is better than being

blind to them when performing component separations

• A demonstration study - NOT A FORECAST for spectral distortion

measurements

Lightening recap of spectral distortions

Foreground challenges for measurement of spectral distortions

CMB: Spectral distortions vs Spatial anisotropies

Foreground challenges for measurement of spectral distortions

PROGRESS

Requirements for "measuring" spectral distortions?

Why?

- Signals are small!
 - Many many foregrounds (+ ones we have not seen yet)
 - Variation in signals are small.
 - In principle, single pixel measurement is enough. But, sky coverage is expected to help with mitigating the foregrounds challenge.

- Sensitivity (~0.01 Jy)
- Many many channels (~20-100s) (think spectroscopy)
- Good channel cross calibration
- Sky coverage

Voyage 2050 SDWP : arXiv:1909.01593

See talk by Jens Chluba tomorrow!

Observers assumption (current)

Reality in nature

Furthermore...

- We don't observe with a Delta function beam —> inescapable angular averaging, which can't be undone!
 - Maybe combine high res. with low res. obs., sensitivity details!
 - Do we have to worry about frequency dependent beams?

- Analysis choice results in another form of averaging
 - PS level data modeling Recall talk by Jonathan Aumont yesterday!
 - Harmonic space ILC methods + variants
 - Real space cleaning methods: COMMANDER

What are moments?

Describing SED resulting from sum of modified black bodies:

$$S_{\nu} = \int \frac{dI}{ds} ds = \int \frac{B_{\nu}(\alpha, T)P(\alpha, T)d\alpha dT}{B_{\nu}(\alpha, T)P(\alpha, T)d\alpha dT}$$

Building on top of the simple parametrization:

$$S_{\nu} = \sum_{m,n} \partial_{\alpha}^{m} \partial_{T}^{n} B_{\nu}(\alpha_{0}, T_{0}) \int (\alpha - \alpha_{0})^{m} (T - T_{0})^{n} P(\alpha, T) d\alpha dT$$

Moments of the distribution function

$$\begin{split} S_{\nu}(\alpha_{0}, T_{0}, A, p_{\alpha}, p_{T}, p_{\alpha\alpha}, p_{\alpha T}, p_{TT}, \cdots) &\simeq AB_{\nu}(\alpha_{0}, T_{0}) \\ &+ p_{\alpha}\partial_{\alpha}B_{\nu}(\alpha_{0}, T_{0}) + p_{T}\partial_{T}B_{\nu}(\alpha_{0}, T_{0}) \\ &+ p_{\alpha\alpha}\partial_{\alpha}^{2}B(\alpha_{0}, T_{0}) + p_{\alpha T}\partial_{\alpha}\partial_{T}B(\alpha_{0}, T_{0}) + p_{TT}\partial_{T}^{2}B(\alpha_{0}, T_{0}) \end{split}$$

J. Chluba, J. C. Hill & M. H. Abitbol, MNRAS, Vol. 472, Iss. 1, 1195-1213

Foreground challenges for measurement of spectral distortions

Measuring moments

$$S_{\nu}(\overrightarrow{p}_{0}, \mathscr{M}_{i}^{\text{Sig.}}, \mathscr{M}_{i}^{\text{Frg.}}, \cdots) = \sum_{i} B_{\nu i}(\overrightarrow{p}_{0}) \mathscr{M}_{i} + \epsilon_{i}$$

• This is not written in any particular basis - real/harmonic.

(which space requires fewer basis vectors to model foregrounds?)

• Spatial and spectral complexity of foregrounds are correlated!

(the moment way of thinking about foregrounds!)

How many moments to model foregrounds to desired accuracy? SKY AVERAGED - SINGLE PIXEL

- SED evaluated from sky sims. generated using Python Sky Model (fsky=0.66)
- These moments are generated from spatial averaging.
- Maybe one expects similar order of magnitude moments arising from line of sight averaging

ILC RECAP

$$d_{\nu i} = \sum_{c} s_{\nu}^{c} \tau_{i}^{c} + n_{\nu i},$$

$$\hat{a}_{i}^{c_{0}} = \sum_{\nu} w_{\nu}^{c_{0}} d_{\nu i} = w_{c_{0}}^{T} \cdot d . \qquad \sum_{\nu} w_{\nu}^{c_{0}} s_{\nu}^{c_{0}} = w_{c_{0}}^{T} \cdot s_{c_{0}} = 1.$$
Tegmark et. al. 2003

INJECT **ONLY** SED OF SIGNAL OF INTEREST

CONSTRAINED ILC $w_{c_0}^T \cdot [s^{c_0}, s^{c_1}, s^{c_2} \cdots s^{c_n}] = [1, 0, 0 \cdots 0],$ Remazeilles et. al. 2011

INJECT SED OF ALL SIGNALS OF INTEREST AND SOLVE FOR THEM SIMULTANEOUSLY

$$\hat{a}^{c_0} = a^{c_0} + \sum_{c}^{c \neq c_0} \left(w_c^T \cdot s^c a^c + w_c^T n \right) = a^{c_0} + \mathcal{B}^{c_0} + n^{c_0}$$

Simulated "absolutely calibrated" data

- 30 channels from 30-3000 GHz
- 30 arc minute Gaussian beam smoothing
- Only dust frg. D2 model from PySM
- No rSZ corrections to ydistortions
 See talk by Mathieu tomorrow!
- μ distortion amplitude ~100 smaller than FIRAS

We assume the 2.725 K CMB is subtracted from the data!

Simulated "absolutely calibrated" data

3000 GHz

We assume the 2.725 K CMB is subtracted from the data!

Noise RMS : 5000 Jy/px

Foreground challenges for measurement of spectral distortions

Noise RMS : 500 Jy/px

Noise RMS : 50 Jy/px

Noise RMS : 5 Jy/px

Noise RMS : 5000 Jy/px

Foreground challenges for measurement of spectral distortions

Noise RMS : 500 Jy/px

Foreground challenges for measurement of spectral distortions

Noise RMS : 50 Jy/px

Foreground challenges for measurement of spectral distortions

Noise RMS : 5 Jy/px

Foreground challenges for measurement of spectral distortions

Rotti & Chluba, Submitted

Foreground challenges for measurement of spectral distortions

4		-		-	*	1	*	1	1
S.S.						and a			10.00
đ.	Sal -								
Server.		1 m							
1.	Sale -	1							
186.4	14	in the	A. C.	See					
4	1								
23.520	No.	Kent.							
				1. July 1. Jul					
60.00	Ko da se	Burger	Al andre	25.36	1.44	1. S. S.			
	•	•		•	1. 31				
See.	144	- 44	140	44					
				•	1. 31				
2.84					440				
2.53									
32									
18.84									
32									
15.54									

Noise RMS : 5000 Jy/px

	4					and and	and and	and and	and and
ú.						-			
die:				-	14				
tion .						*			
in the									
ing.	* 2 - 540	1 2	*	1.4					
al no	. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		4 	1 4	1.1.2				
al se			-		4				
and the second									
and the second									

Noise RMS : 500 Jy/px

1. A.				-		- 44	1	1	1
and a								alas.	
				4 201-					
	1	1.2							
-		.		* 16	*		*		
1440	N. S.	Sur.		No a					
	*	*		*	1.2	•	1.34		
6-550	A. Sta	1. 1. 1.4	540	200	1. 46	1. 1. 1.			
1	•	ing a		1	1.0				
153 5 6 10	12 234	1. 140	1. 1. 44	1.1.44	1. 46	1. 19.84	1		
and and	· ·	1	•	22		•			
	S. C. S.	STORNES H							
and a			2					144	
and the second				•					

Noise RMS : 50 Jy/px

4									1
1. A. P. 1									ans.
4									
	also.								
4		322							- 11
and the	alas	A Stall	*	~					
4	A.	3.24	4						
See.	A 25	K TRA	See. See			2.5			
A	19. No	$(\mathcal{A}_{k}^{(i)})_{i\in \mathbb{N}}$		2					
and a second	Aless.	A. P.		En se					
	14. 15				1. A. 1. 1. A. 1. 1. A.				
and .	al an	a state		S. Che	$\lambda^{-1} \psi$	$\lambda = \omega_{1}$	2.4		
1	$\{X_{\chi^{\frac{1}{2}}}\}$	A A			144 197	1.			
53.44	1.00	E.C.		5. Ch	A. W.				
	A.S.	*		*		4	18 N.G		
	1000	E. H.		S. Ma	1. 44		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
	1. S.	•	•	×	*	1	•	*	
			-	-				1. 44	
13	$\{\sigma_{i}\}_{i=1}^{n}$				•	A	$ \sigma_{1} ^{1/2}$	$\{\sigma_{1}\}_{i=1}^{n}$	
das.	1.200	Kon .		i i sa			1. 1. 1. 1.		1. 1. 1.40

Noise RMS : 5 Jy/px

Summary

- In the moment framework, the spectral and spatial complexity of foregrounds are tightly correlated.
- The foreground SED's are not know as precisely as we do for CMB, y, mu. Nonetheless the moment approach allows for this semi-blind modeling.
- Moment-ILC (MILC) can be used to measure monopolar signals.
- The component separated maps have lower noise on projecting out foregrounds.
- Moments maps of foregrounds are a new astrophysical observable. Studying the connection to ISM needs more work.
- Extension of the formalism and methods to B-mode analysis- ongoing work!
- Possible applications to 21cm global signal measurements.

Caveats

- Need to include all foregrounds! Moment modeling for other foreground models will be essential (CO, AME etc.).
- Monopole measurement of CMB and y on small patches likely biased by higher

multipoles, this is not an issue with μ though!