SUVODIP MUKHERJEE

PATCHY REIONIZATION AND CMB B-MODE POLARIZATION

B-mode from Space-2019, MPA, Garching

COSMIC HISTORY-101

HURDLES TO THE PRIMORDIAL B-MODES

- Instrument noise
- Systematic effects
- Galactic foregrounds
- Extragalactic foregrounds
 - Weak Lensing of CMB polarization
 - Epoch of cosmic reionization

3

COSMIC REIONIZATION

- When reionization started ?
- When reionization ended ?
- Is it a fast process or a slow process?
- Are they driven by lighter halos or massive halos?
- How much inhomogeneous is the reionization process?

COSMIC REIONIZATION

- When reionization started ?
- When reionization ended ?
- Is it a fast process or a slow process?
- Are they driven by lighter halos or massive halos?
- How much inhomogeneous is the reionization process?

FROM INHOMOGENEOUS DISTRIBUTION OF FREE ELECTRONS TO B-MODE POLARIZATION SIGNAL

Screening: Important at small angular scales **Scattering:** Important at large angular scales

Hu (2000), Dvorkin and Smith (2009),

Mortonson and Hu (2010)

FROM INHOMOGENEOUS DISTRIBUTION OF FREE ELECTRONS TO B-MODE POLARIZATION SIGNAL

Screening: Important at small angular scales $(Q \pm iU)(\hat{n}) = e^{-\tau(\hat{n})}(Q \pm iU)_p(\hat{n})$

 \sin^2

 $C_l^{BB} = e^{-2\bar{\tau}} \int \frac{d^2l'}{(2\pi)^2} C_{l'}^{EE,p} C$

FROM INTEMOGENEOUS DISTRIBUTION OF FREE ELECTRONS TO B-MODE POLARIZATION SIGNAL

Screening: Important at small angular scales $(Q \pm iU)(\hat{n}) = e^{-\tau(\hat{n})}(Q \pm iU)_p(\hat{n})$

 $|v|\sin^2$

Øvorkin, Hu and Smith 2009

FROM INHOMOGENEOUS DISTRIBUTION OF FREE ELECTRONS TO B-MODE POLARIZATION SIGNAL

COSMIC REIONIZATION HISTORY: NOT KNOWN YET

- Quasars probe the reionization history
- CMB constraints from Temperature and E-mode polarization can constrain the optical depth.
- Patchy Kinetic SZ can constrain the width of epoch of reionization

Mukherjee, Paul, Choudhury MNRAS 486 (2019)

We consider a fixed reionization history and make simulations of cosmic reionization (with MANY assumptions)

SIMULATION OF COSMIC REIONIZATION USING GADGET-2

FOR A FIXED REIONIZATION HISTORY WITH DIFFERENT HALO MASSES 10⁸ TO 10¹¹ M_{SUN} DRIVING THE REIONIZATION For 10⁸ M_{sun}

Mukherjee, Paul, Choudhury MNRAS 486 (2019)

For 10¹⁰ M_{sun}

Reionization driven by big halos lead to large bubbles hence large fluctuations

11

CMB B-MODE POWER SPECTRUM

Mukherjee, Paul, Choudhury MNRAS 486 (2019)

CMB B-MODE POWER SPECTRUM: COMPARISON OF DIFFERENT RESULTS

IMPACT OF THE CONTAMINATION ON TENSOR TO SCALAR RATIO: BIAS

Mukherjee, Paul, Choudhury MNRAS 486 (2019)

 $-2\mathcal{L} \propto \sum_{l,l'=l_{min}}^{l_{max}} (\tilde{C}_{l}^{BB} - C_{l}^{BB}) \Sigma_{ll'}^{-1} (\tilde{C}_{l'}^{BB} - C_{l'}^{BB})$ $\tilde{C}_{l}^{BB} = C_{l}^{BB,prim} + A_{\tau} C_{l}^{BB,reion} (M_{min}) + A_{lens} C_{l}^{BB,lens}$ $\Sigma_{ll'} = \frac{2}{f_{sky}(2l+1)} \left(\tilde{C}_{l}^{BB} + N_{l} \right)^{2} \delta_{ll'}$

IMPACT OF THE CONTAMINATION ON TENSOR TO SCALAR RATIO: ERROR-BAR

- Reionization driven by larger halos creates more bias in the value of tensor to scalar ratio.
- The shape of the power spectrum of B-mode signal from primordial GW and patchy reionization differs and can be distinguished.

Mukherjee, Paul, Choudhury MNRAS 486 (2019)

COMBINING DIFFERENT PROBES TO UNDERSTAND COSMIC REIONIZATION

COMBINING DIFFERENT PROBES TO UNDERSTAND COSMIC REIONIZATION

Measurement of the E-mode polarization and reionization KSZ signal can constrain the optical depth and width of the cosmic reionization.

Bubble size during the reionization

optical depth

COMBINING DIFFERENT PROBES TO UNDERSTAND COSMIC REIONIZATION

- Measurement of the E-mode polarization and reionization KSZ signal can constrain the optical depth and width of the cosmic reionization.
- Use KSZ-21 cm cross-correlation to probe the bubble size during the epoch of cosmic reionization.

Bubble size during the reionization

Width of the epoch of reionization 2.0 34 (TT) 54 (TT) $54 (TT) + (T^2T^2)$ $54 (TT) + (T^2T^2)$

0.06

 τ_{es}

0.05

0.5

0.0

0.04

0.07

0.08

optical depth

KSZ X 21 CM : PROBE TO THE BUBBLE SIZE

$$\frac{\Delta T(\hat{n})}{T_0} = -\frac{\sigma_T \bar{n}_{e,0}}{c} \int \frac{d\chi}{a^2} e^{-\tau} \mathbf{q} \cdot \hat{n}$$
$$\mathbf{q} = x_e (1+\delta) \mathbf{v}$$
$$\delta T_b(\mathbf{x},z) = 27 x_{\rm HI}(\mathbf{x},z) [1+\delta(\mathbf{x},z)] \left(\frac{\Omega_B h^2}{0.023}\right)$$
$$\times \left(\frac{0.15}{\Omega_m h^2} \frac{1+z}{10}\right)^{1/2} \left(1-\frac{T_{\gamma}}{T_S}\right) \mathbf{m} \mathbf{r}$$

Realizations from the same initial conditions

 $10^{10} \,\mathrm{M_{sun}}$

10⁸ M_{sun}

(Under Preparation)

KSZ X 21 CM : PROBE TO THE BUBBLE SIZE

(Under Preparation)

SUMMARIZING THE IMPACT

COMBINING DIFFERENT PROBES TO UNDERSTAND COSMIC REIONIZATION

IS PATCHY REIONIZATION AN OBSTACLE IN DETECTING THE PRIMORDIAL B-MODE SIGNAL ?

CONCLUSIONS

- Reionization driven by massive halos causes larger fluctuations in the electron density.
- Larger fluctuations in the electron density leads to secondary B-mode polarization.
- B-mode signal from reionization differs from the PGW in the spatial domain and can be separated.

PATCHY REIONIZATION IS NOT A SHOW-STOPPER TO DISCOVER PGW SIGNAL WHICH ARE ACCESSIBLE FROM THE UPCOMING CMB MISSIONS

MORE SLIDES FOR ENTHUSIASTIC AUDIENCE

CHARACTERISTIC BUBBLE SIZE AT Z=8

Mukherjee, Paul, Choudhury MNRAS 486 (2019)

