Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles from CMB experiments

DOI: 10.1093/ptep/ptz079

Yuto Minami, Hiroki Ochi, Kiyotomo Ichiki, Nobu Katayama, Eiichiro Komatsu, and Tomotake Matsumura

Introduction:

 \blacktriangleright Miscalibration of detector rotation angle (α) creates spurious B-mode from E-mode

$$C_{\ell}^{BB,o} = C_{\ell}^{EE} \sin(2\alpha) + C_{\ell}^{BB} \cos(2\alpha) \dots (1)$$

observed before detectors

We need to determine α to calibrate rotation angle

 \triangleright In past experiments, this α was calculated assuming that EB correlation of CMB is zero:

$$C_{\ell}^{EB,o} = \frac{1}{2} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right) \sin(4\alpha) \quad \cdots (2)$$
From theory

"Self-calibration" by Brian G. Keating et al. (2013)

Some issues in "self-calibration"

CMB should be dominant

- \triangleright Because foreground signals also have α ,
 - > We need to know the foreground model
 - > We need to mask the Galactic plane

Cosmological *EB* correlation should be zero

> We lose sensitivity to cosmic birefringence

To solve these issues

We relate observed E- and B- modes to the intrinsic ones as

$$E_{\ell,m}^{o} = E_{\ell,m} \cos(2\alpha) - B_{\ell,m} \sin(2\alpha)$$

$$B_{\ell,m}^{o} = E_{\ell,m} \sin(2\alpha) + B_{\ell,m} \cos(2\alpha)$$
...(3)

From these equations, we find

$$C_{\ell}^{EB,o} = \frac{1}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) \tan(4\alpha) + \frac{C_{\ell}^{EB}}{\cos(4\alpha)} \quad \cdots (4)$$
G. B. Zhao et al. (2015)

Our work

- \triangleright We can estimate α with only observed data
- ➤ If we assume theory CMB power spectra, we can estimate an additional angle!

Cosmic birefringence

During the long travel from the recombination era to Earth, CMB can be rotated by some physics (e.g. axionic fields)

In this case,

- \triangleright Foreground term: rotated only by α
- \triangleright CMB term: rotated by $\alpha + \beta$

Equations including birefringence rotation:

The coefficients become

$$\begin{split} E_{\ell,m}^{\text{o}} &= E_{\ell,m}^{\text{fg}} \cos(2\alpha) - B_{\ell,m}^{\text{fg}} \sin(2\alpha) + E_{\ell,m}^{\text{CMB}} \cos(2\alpha + 2\beta) - B_{\ell,m}^{\text{CMB}} \sin(2\alpha + 2\beta) + E_{\ell,m}^{\text{N}} \\ B_{\ell,m}^{\text{o}} &= E_{\ell,m}^{\text{fg}} \sin(2\alpha) + B_{\ell,m}^{\text{fg}} \cos(2\alpha) + E_{\ell,m}^{\text{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\text{CMB}} \cos(2\alpha + 2\beta) + B_{\ell,m}^{\text{N}} \end{split}$$

\cdots (5)

From them, we derived

$$\begin{split} \left(C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right)\right) \cos(4\alpha) &= \\ \left(C_{\ell}^{EE,\text{CMB}} - C_{\ell}^{BB,\text{CMB}}\right) \sin(4\beta)/2 \\ &- \left(C_{\ell}^{EE,N} - C_{\ell}^{BB,N}\right) \sin(4\alpha)/2 \\ &+ C_{\ell}^{EB,\text{fg}} + C_{\ell}^{EB,N} \cos(4\alpha) + C_{\ell}^{EB,\text{CMB}} \cos(4\beta) \\ &+ \left(C_{\ell}^{E^{\text{fg}}B^{\text{CMB}}} + C_{\ell}^{E^{\text{CMB}}B^{\text{fg}}}\right) \cos(2\beta) + \left(C_{\ell}^{E^{\text{fg}}E^{\text{CMB}}} - C_{\ell}^{B^{\text{fg}}B^{\text{CMB}}}\right) \sin(2\beta) \\ &+ \left(C_{\ell}^{E^{\text{fg}}B^{\text{N}}} + C_{\ell}^{B^{\text{fg}}E^{\text{N}}}\right) \cos(2\alpha) - \left(C_{\ell}^{E^{\text{fg}}E^{\text{N}}} - C_{\ell}^{B^{\text{fg}}B^{\text{N}}}\right) \sin(2\alpha) \\ &+ \left(C_{\ell}^{E^{\text{CMB}}B^{\text{N}}} + C_{\ell}^{B^{\text{CMB}}E^{\text{N}}}\right) \cos(2\alpha - 2\beta) \\ &- \left(C_{\ell}^{E^{\text{CMB}}E^{\text{N}}} - C_{\ell}^{B^{\text{CMB}}B^{\text{N}}}\right) \sin(2\alpha - 2\beta) \,. \end{split}$$

Equations including birefringence rotation:

If we take an ensemble average

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\langle C_{\ell}^{EE,\text{CMB}} \rangle - \langle C_{\ell}^{BB,\text{CMB}} \rangle \right) \cdots (7)$$

$$+ \frac{1}{\cos(4\alpha)} \langle C_{\ell}^{EB,\text{fg}} \rangle + \frac{\cos(4\beta)}{\cos(4\alpha)} \langle C_{\ell}^{EB,\text{CMB}} \rangle.$$
 Assume these to be zero

Therefore, we can determine both miscalibration and birefringence-rotation angles simultaneously!

Construct a likelihood for determination of α and β

If we take an ensemble average

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\langle C_{\ell}^{EE,\text{CMB}} \rangle - \langle C_{\ell}^{BB,\text{CMB}} \rangle \right) \cdots (7)$$

$$+ \frac{1}{\cos(4\alpha)} \langle C_{\ell}^{EB,\text{fg}} \rangle + \frac{\cos(4\beta)}{\cos(4\alpha)} \langle C_{\ell}^{EB,\text{CMB}} \rangle.$$
 Assume these to be zero

$$-2 \ln \mathcal{L} = \sum_{\ell=2}^{\ell_{\text{max}}} \frac{\left[C_{\ell}^{EB,\text{o}} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}} \right) - \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,\text{CMB}} - C_{\ell}^{BB,\text{CMB}} \right) \right]^{2}}{\text{Var} \left(C_{\ell}^{EB,\text{o}} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}} \right) \right) \qquad \dots (8)$$

Minimise $-2\ln\mathcal{L}$ to determine α and β

Sky simulation setup for the validation

- Components
 - Thermal dust: modified black body
 - Synchrotron: simple power law
 - CMB: tensor-to-scalar ratio r = 0
 - Noise: white noise with LiteBIRD polarisation sensitivity
- \triangleright N_{side} is 512 and I_{max} is 1024
- Compute EB power spectra from full-sky maps

Sky simulation setup for the validation: LiteBIRD

We extract representative 4 frequencies to show how the method works

	Frequency	polarisation sensitivity (uK')	Beam size in FWHM (arcmin)
Synchrotron	50	24.0	48
СМВ	119	7.6	25
Dust + CMB	195	5.8	20
Dust	235	7.7	19

LiteBIRD parameters extracted from M. Hazumi et al., J. Low Temp. Phys. 194, 443 (2019).

Variance

With full-sky power spectra (not cut-sky pseudo power spectra), we can calculate variance exactly as

$$\operatorname{Var}\left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha)/2\right]$$

$$= \left\langle \left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha)/2\right]^{2} \right\rangle - \left\langle C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha)/2\right\rangle^{2}$$

$$= \frac{1}{2\ell+1} \left\langle C_{\ell}^{EE} \right\rangle \left\langle C_{\ell}^{BB} \right\rangle + \frac{\tan^{2}(4\alpha)}{4} \frac{2}{2\ell+1} \left(\left\langle C_{\ell}^{EE} \right\rangle^{2} + \left\langle C_{\ell}^{BB} \right\rangle^{2} \right)$$

$$- \tan(4\alpha) \frac{2}{2\ell+1} \left\langle C_{\ell}^{EB} \right\rangle \left(\left\langle C_{\ell}^{EE} \right\rangle - \left\langle C_{\ell}^{BB} \right\rangle \right) + \frac{1}{2\ell+1} \left(1 - \tan^{2}(4\alpha) \right) \left\langle C_{\ell}^{EB} \right\rangle^{2}.$$

$$= 0$$

- ightharpoonup We approximate $\langle C_\ell^{XY} \rangle \approx C_\ell^{XY,o}$
- \triangleright We ignore $\langle C_{\ell}^{EB} \rangle^2$ term because it's small and yields bias
 - Fiven if $\langle C_\ell^{EB} \rangle \approx 0$, $C_\ell^{EB,o}$ has a small non-zero value with fluctuation, and $C_\ell^{EB,o}$ yields bias

Before the simultaneous determination: α only case

If we assume $\beta_{in}=0$, we can set $\beta=0$ in the Likelihood as,

$$-2\ln\mathcal{L} = \frac{\left[C_{\ell}^{EB,o} - \frac{1}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) \tan(4\alpha)\right]^{2}}{\operatorname{Var}\left(C_{\ell}^{EB,o} - \frac{1}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) \tan(4\alpha)\right)}. \quad \cdots (10)$$

With this likelihood, we can determine α .

α only estimation at 195 GHz

We set β_{in} =0 and try whether we can determine α_{in}

We can recover the correct α without theoretical power spectra

Simultaneous determination at 195 GHz

$$\sigma(\alpha) = 9.6$$
 arcmin and $\sigma(\beta) = 11$ arcmin

We can recover the correct α and β simultaneously

Correlation between α and β

$$E_{\ell,m}^{\rm o} = E_{\ell,m}^{\rm fg} \cos(2\alpha) - B_{\ell,m}^{\rm fg} \sin(2\alpha) + E_{\ell,m}^{\rm CMB} \cos(2\alpha + 2\beta) - B_{\ell,m}^{\rm CMB} \sin(2\alpha + 2\beta)$$

Synchrotron channel (50 GHz)

CMB channel (119 GHz) Dust channel (235 GHz)

- \triangleright CMB has a power to determine $\alpha+\beta$
- \triangleright FG has a power to determine α

Future prospect: Possibility to determine foreground *EB*

In general, EB is related to EE and BB as

$$C_{\ell}^{EB} = f_c \sqrt{\langle C_{\ell}^{EE} \rangle \langle C_{\ell}^{BB} \rangle} \qquad \cdots (11)$$

where f_c is a correlation coefficient.

We assume BB is proportional to EE as

10

30

100

16

300

Relate correlation parameters to rotation angle

> If EB correlation is small enough to meet

$$0 \le \frac{2f_c\sqrt{\xi}}{1-\xi} \le 1, \qquad \cdots (13)$$

we can put f_c and ξ into the rotation angle γ as,

$$\frac{\sin(4\gamma)}{2} = \frac{f_c\sqrt{\xi}}{1-\xi}.$$
 ... (14)

> Therefore, we can determine foreground EB correlation, if we give up measuring β

Summary

There was a consensus in the CMB community that the measurement of the cosmic birefringence and the polarization angle calibration cannot be done simultaneously.

We have shown that this is not the case.

We can determine the birefringence angle of order 10 arcmin (current 1σ bound is 30 arcmin)

This is a great news!

Backups

Table 1: Polarisation sensitivity and beam size of the LiteBIRD telescopes [15]

Frequency (GHz)	Polarization Sensitivity $(\mu K^{'})$	Beam Size in FWHM (arcmin)
40	37.5	69
50	24.0	56
60	19.9	48
68	16.2	43
78	13.5	39
89	11.7	35
100	9.2	29
119	7.6	25
140	5.9	23
166	6.5	21
195	5.8	20
235	7.7	19
280	13.2	24
337	19.5	20
402	37.5	17

Possibility to determine foreground EB

M. H. Abitbol, J. C. Hill, and B. R. Johnson, Mon. Not. Roy. Astron. Soc., 457(2), 1796–1803 (2016), 200 arXiv:1512.06834.

$$C_{\ell}^{dust,XY} = A^{XY} \left(\frac{\ell}{80}\right)^{-2.42} \tag{1}$$

$$C_{\ell,mult}^{dust,XY} = mC_{\ell}^{dust,XY} \tag{2}$$

$$C_{\ell,corr}^{dust,ZB} = f_c \sqrt{C_{\ell,mult}^{dust,ZZ} C_{\ell,mult}^{dust,BB}},$$
(3)

where A^{XY} is the best-fitting amplitude, m is a multiplicative factor, f_c is a correlation fraction, $X,Y \in \{T,E,B\}$ and $Z \in \{T,E\}$.

Planck Collaboration XI (2018), arXiv:1801.04945.

Foreground

$$\langle C_{\ell}^{EB, \mathrm{fg}} \rangle = \frac{f_c \sqrt{\xi}}{1 - \xi} \left(\langle C_{\ell}^{EE, \mathrm{fg}} \rangle - \langle C_{\ell}^{BB, \mathrm{fg}} \rangle \right) \cdot \underbrace{- \frac{\sin(4\gamma)}{2} \left(\left\langle C_{\ell}^{EE, fg} \right\rangle - \left\langle C_{\ell}^{BB, fg} \right\rangle \right)}_{2}$$

$$E_{\ell,m}^{\text{o,fg}} = E_{\ell,m}^{\text{fg}} \cos(2\gamma) - B_{\ell,m}^{\text{fg}} \sin(2\gamma),$$

$$B_{\ell,m}^{\text{o,fg}} = E_{\ell,m}^{\text{fg}} \sin(2\gamma) + B_{\ell,m}^{\text{fg}} \cos(2\gamma),$$

Replace α -> α + γ β ->- γ in birefringence estimation

$$\left(C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) \right) \cos(4\alpha + 4\gamma) =$$

$$\left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right) \sin(-4\gamma)/2$$

$$+ C_{\ell}^{EB,fg} + C_{\ell}^{EB,N} \cos(4\alpha + 4\gamma) + C_{\ell}^{EB,CMB} \cos(-4\gamma)$$

$$- \left(C_{\ell}^{EE,N} - C_{\ell}^{BB,N} \right) \sin(4\alpha + 4\gamma)/2$$

$$+ \left(C_{\ell}^{EfgB^{CMB}} + C_{\ell}^{E^{CMB}B^{fg}} \right) \cos(-2\gamma) + \left(C_{\ell}^{EfgE^{CMB}} - C_{\ell}^{BfgB^{CMB}} \right) \sin(-2\gamma)$$

$$+ \left(C_{\ell}^{EfgB^{N}} + C_{\ell}^{BfgE^{N}} \right) \cos(2\alpha + 2\gamma) - \left(C_{\ell}^{EfgE^{N}} - C_{\ell}^{BfgB^{N}} \right) \sin(2\alpha + 2\gamma)$$

$$+ \left(C_{\ell}^{E^{CMB}B^{N}} + C_{\ell}^{B^{CMB}E^{N}} \right) \cos(2\alpha + 4\gamma)$$

$$- \left(C_{\ell}^{E^{CMB}E^{N}} - C_{\ell}^{B^{CMB}B^{N}} \right) \sin(2\alpha + 4\gamma)$$

Equations including birefringence rotation – carefully-

We should not forget noise and other correlations!

$$\begin{split} E_{\ell,m}^{\text{o}} &= E_{\ell,m}^{\text{fg}} \cos(2\alpha) - B_{\ell,m}^{\text{fg}} \sin(2\alpha) + E_{\ell,m}^{\text{CMB}} \cos(2\alpha + 2\beta) - B_{\ell,m}^{\text{CMB}} \sin(2\alpha + 2\beta) + E_{\ell,m}^{\text{N}}, \\ B_{\ell,m}^{\text{o}} &= E_{\ell,m}^{\text{fg}} \sin(2\alpha) + B_{\ell,m}^{\text{fg}} \cos(2\alpha) + E_{\ell,m}^{\text{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\text{CMB}} \cos(2\alpha + 2\beta) + B_{\ell,m}^{\text{N}} \\ &\left(C_{\ell}^{EB,\text{o}} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}}\right)\right) \cos(4\alpha) = \\ &\left(C_{\ell}^{EE,\text{CMB}} - C_{\ell}^{BB,\text{CMB}}\right) \sin(4\beta)/2 \\ &+ C_{\ell}^{EB,\text{fg}} + C_{\ell}^{EB,\text{N}} \cos(4\alpha) + C_{\ell}^{EB,\text{CMB}} \cos(4\beta) \\ &- (C_{\ell}^{EE,\text{N}} - C_{\ell}^{BB,\text{N}}) \sin(4\alpha)/2 \\ &+ (C_{\ell}^{E^{\text{fg}}B^{\text{CMB}}} + C_{\ell}^{E^{\text{CMB}}B^{\text{fg}}}) \cos(2\beta) + (C_{\ell}^{E^{\text{fg}}E^{\text{CMB}}} - C_{\ell}^{B^{\text{fg}}B^{\text{CMB}}}) \sin(2\beta) \\ &+ (C_{\ell}^{E^{\text{fg}}B^{\text{N}}} + C_{\ell}^{B^{\text{fg}}E^{\text{N}}}) \cos(2\alpha) - (C_{\ell}^{E^{\text{fg}}E^{\text{N}}} - C_{\ell}^{B^{\text{fg}}B^{\text{N}}}) \sin(2\alpha) \\ &+ (C_{\ell}^{E^{\text{CMB}}B^{\text{N}}} + C_{\ell}^{B^{\text{CMB}}E^{\text{N}}}) \cos(2\alpha - 2\beta) \\ &- (C_{\ell}^{E^{\text{CMB}}B^{\text{N}}} - C_{\ell}^{B^{\text{CMB}}B^{\text{N}}}) \sin(2\alpha - 2\beta) \end{split}$$

Variance

$$\begin{aligned} & \operatorname{Var} \left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha) / 2 \right] \\ &= \langle \left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha) / 2 \right]^{2} \rangle - \langle C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha) / 2 \rangle^{2} \\ &= \frac{1}{2\ell + 1} \langle C_{\ell}^{EE} \rangle \langle C_{\ell}^{BB} \rangle + \frac{\tan^{2}(4\alpha)}{4} \frac{2}{2\ell + 1} \left(\langle C_{\ell}^{EE} \rangle^{2} + \langle C_{\ell}^{BB} \rangle^{2} \right) \\ &- \tan(4\alpha) \frac{2}{2\ell + 1} \langle C_{\ell}^{EB} \rangle \left(\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle \right) + \frac{1}{2\ell + 1} \left(1 - \tan^{2}(4\alpha) \right) \langle C_{\ell}^{EB} \rangle^{2}. \end{aligned} \tag{A1}$$

$$& \operatorname{Var} \left[C_{\ell}^{EB,o} - \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) \tan(4\alpha) / 2 \right] \\ &\approx \frac{1}{2\ell + 1} C_{\ell}^{EE,o} C_{\ell}^{BB,o} + \frac{\tan^{2}(4\alpha)}{4} \frac{2}{2\ell + 1} \left[\left(C_{\ell}^{EE,o} \right)^{2} + \left(C_{\ell}^{BB,o} \right)^{2} \right] \\ &- \tan(4\alpha) \frac{2}{2\ell + 1} C_{\ell}^{EB,o} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) \right]. \end{aligned}$$