B-modes from space 2019

The challenges of ground calibration and systematics in the light of LiteBIRD

Sophie Henrot-Versillé (IJL Lab) on behalf of the LiteBIRD collaboration

Systematics and the Planck data: an example

The AL parameter, 3 high-I likelihoods, with different foreground modellings:

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, TT + lowE [Plik])

 $A_{\rm L} = 1.246 \pm 0.095$ (68 %, TT + lowE [CamSpec])

 $A_{\rm L} = 1.160 \pm 0.075$ (68 %, TT + lowE [Hillipop])

=> reveals the impact of remaining systematics
=> they may come from fg model or instrumental syste which is catched differently by the different fg modellings parameters

F. <u>Couchot</u> et al. A&A 597, A126 (2017) [Planck 2018 results. VI]

Systematics and the Planck data: an example

The AL parameter, 3 high-I likelihoods, with different foreground modellings:

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, TT + lowE [Plik])

 $A_{\rm L} = 1.246 \pm 0.095$ (68 %, TT + lowE [CamSpec])

 $A_{\rm L} = 1.160 \pm 0.075$ (68 %, TT + lowE [Hillipop])

=> reveals the impact of remaining systematics
=> they may come from fg model or instrumental syste which is catched differently by the different fg modellings parameters

F. Couchot et al. A&A 597, A126 (2017) [Planck 2018 results. VI]

Why do we care ?

because we want to constrain the physics of the Universe in an unbiased way eg: Sum of the neutrino mass

– high value for $A_L \rightarrow artificially tighter constraints on <math>\Sigma m_{\nu}$

Systematics and the Planck data: an example

The AL parameter, 3 high-I likelihoods, with different foreground modellings:

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, TT + lowE [Plik])

 $A_{\rm L} = 1.246 \pm 0.095$ (68 %, TT + lowE [CamSpec])

 $A_{\rm L} = 1.160 \pm 0.075$ (68 %, TT + lowE [Hillipop])

=> reveals the impact of remaining systematics
=> they may come from fg model or instrumental syste which is catched differently by the different fg modellings parameters

F. Couchot et al. A&A 597, A126 (2017) [Planck 2018 results. VI]

Why do we care ?

because we want to constrain the physics of the Universe in an unbiased way eg: Sum of the neutrino mass

– high value for $A_L \rightarrow artificially tighter constraints on <math>\Sigma m_{\nu}$

To get to r we need to know our instruments

B-modes from

space -2019

Otherwise, if we use a wrong description....

	Name	Origin	Description	Major mode of Leakage
	Bandpass Mismatch	Spectral Filters	Edges and shape of the spectral filters vary from detector to detector.	I -> P
	Beam Mismatch and Asymmetry	Optical beams	Beam shape differs from an ideal Gaussian form.	l -> P E -> B
	Pointing Uncertainty	Attitute control, pointing reconstruction	Detector pointing at location different from that given by reconstructed pointing data.	l -> P E -> B
	Polarisation Misalignment	Detectors	Uncertainty in polarisation calibration. Polarisation axis misaligned with measured direction.	E -> B
,	Gain mismatch and stability	Detectors and Calibration	Gain calibration mismatch between detectors. These could also be variable over time	-> P

From Ranajoy Banerji

But more than that !

BUT: even we have a good description of our instruments,

We will know the instrumental parameters up to a certain level.

Those uncertainties will need to be propagated to the end-results (cosmology!)

=> the resulting errors on cosmological parameters is what is called instrumental systematic error !

We want to measure r with an accuracy of (68%CL):

 $\sigma_r = 0.001$

Assuming:

$$(\sigma_r = 0.001)^2 = \sigma_{\mathbf{syst}}^2 + \sigma_{\mathbf{fg}}^2 + \sigma_{\mathbf{margin}}^2$$

For each potential source of instrumental systematics:

We assign an error budget:

 $\sigma(r)_{sys} < 5.7 \text{ x } 10^{-6}$ as the budget (1% of total budget for systematic error)

From this we derive a requirement on the knowledge of the underlying instrumental parameters.

Those requirements are used to best define the calibration method.

How ? verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

- on the ground and in-flight
- from component level to full integrated instruments

B-modes from space -2019

LiteBIRD verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

- on the ground and in-flight
- from component level to full integrated instruments

B-modes from

LiteBIRD verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

- on the ground and in-flight
- from component level to full integrated instruments

B-modes from

space -2019

LiteBIRD verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

- on the ground and in-flight
- from component level to full integrated instruments

RF measurements for beam characterization

Cold environment "flight-like" loading conditions on the instruments+calibration sources in a big cryogenic facility

=> In this talk I will focus on:

- Beams
- Spectro-polarimetry

(and will not address component level tests)

Beams requirements credit: Ryo Nagata, Davide Maino

pix0000_100_pp_f2p2_v4_mft_uv_log.png

Beams requirements credit: Ryo Nagata, Davide Maino

pix0000_100_pp_f2p2_v4_mft_uv_log.png

space -2019

Beams requirements credit: Ryo Nagata, Davide Maino

pix0000_100_pp_f2p2_v4_mft_uv_log.png

RF ground measurements for LFT

The full strategy is being addressed and further refined with on-going measurements in Japan

=> Next steps: cold measurements

Reference antenna + Gonio + Az rotor

	Angular Range
Reference antenna FoV	$\pm 10 \deg x \pm 2 \deg$
Gonio stage	-1 ~ +15 degree
Az rotor	\pm 180 degree
Total	\pm 25 degree

credit: Yutaro Sekimoto

Challenges of the RF measurements for MHFT

The properties of the lenses (indices of refraction) depends on the temperature

AND

the beam shape depends on the properties of the lenses

we need to cool down the instrument to measure the beams ! ...

Eg: Strehl ratio for various refraction indices of lenses (typical of cold->warm variations)

credit: the MHFT Optics working group (Jon Gudmundsson et al.)

RF ground measurements for MHFT

We are currently studying the best strategy, to build up a model fed with:

credit: the MHFT RF working group (Cristian Franceschet, Jon Gudmundsson, Bruno Maffei et al) +CNES CATR team

- sub-system, semi-integrated and integrated level measurements
- warm/cold measurements

On-going work at CNES/Toulouse:

Antenna models will be built on the basis of MHFT beam simulations (optics group) for 100 to 402 GHz => to be further characterized with the use of submm source in the CATR to perform a feasibility study in CNES facilities.

Modèle de vol de Saphir, instrument du satellite Megha-Tropiques, en essais en BCMA.

Spectro-polarimetry requirements

credit: Patricio Vielva, Enrique Martinez Gonzalez, Tommaso Ghigna

Polarisation angle

Absolute polarisation angle uncertainty must be ≤ 1arcmin to meet δ_r ~ 5.77 10⁻⁶ (less stringent on relative angle per frequency) Note: Planck HFI ~60 arcmin/detector preflight

The requirements are driven by the 119 and 140GHz frequency bands

Spectro-polarimetry requirements

credit: Patricio Vielva, Enrique Martinez Gonzalez, Tommaso Ghigna

The requirements are driven by the 119 and 140GHz frequency bands => measurement resolution of the order of 0.5 (driven by the 337 and 402GHz channels).

M =

-30-20-10 0 10 20 30

0.001

0.0005

0005

 M_{IQ}

credit: Hiroaki Imada, **Guillaume Patanchon**

- include realistic anti-reflection coating
- computed at many frequencies
- computed for many incident angles

 M_{VI}

-30-20-10 0 10 20 30

0.001

0.0005

-0.0005

Tilted HWP to reduce reflexions and ghosts

Mueller matrix coefficients are estimated from the simulations. Decomposed in three terms: $M(\Theta, \rho - \psi) = A + B_0(\Theta) \cos(2\rho - 2\psi + \phi_B)$

 $(C_{XY}) =$

Credit: H. Imada 1.420 × 10⁻⁶

 M_{UI} The 4f terms are potentially biasing the B-mode spectra since they are modulated as the polarization signal. IP M_{VV} Imperfections at $4f_{HWP}$ of the order of 5. 10⁻⁵ 0.0015

 5.262×10^{-5}

 5.295×10^{-5}

At 140 GHz, for $\Theta = 9^{\circ}$ (extreme case)

 9.766×10^{-1}

-> Combining several detectors at different locations of the focal plane reduces the effect since it is observed with different phases

Spectro-polarimetry ground measurements credit: Giorgio Savini

Rotating po

The presence of a polarization modulator couples the two tests:

- Spectral Response
- Polarimetric sensitivity ٠
- => the instrument needs to be cold
- => within a cold "flight-like" environment

Cryogenic facilities for RF&flight-like calibration

"a la Planck-HFI" strategy:

Jupiter @IAS/Orsay

Erios @LAM/Marseille

NB: both need an upgrade

I FT in Japan @ KEK and @ JAXA

0.3K utility test cryostat

credit: Masashi

MHFT In France..and in Europe...

CSL/Liege or even ESA ...

-> on-going discussions & feasibility studies

B-modes experiments calibration operations are very challenging to reach the systematics error budget !

- The Systematics JSG(*) teams in LiteBIRD are working hard to update the requirements for each frequency bands. Next step will be to <u>couple systematic</u> <u>effects</u> and further refine the analysis in collaboration with the foreground JSG, and perform joint <u>simulations</u>.
- The Calibration JSG teams are deeply involved in defining the <u>best strategy</u> to <u>meet the requirements</u>, as well as to prepare the calibration devices and the facilities.
- This is only a status report: more work is needed on all sides, this is a huge effort in the LiteBIRD collaboration !

(*) JSG stands for Joint Study Group

Backups

Instrumental design Overview

• Aperture ø : 300 mm

• Aperture ø : 200 mm

• HFT => Transmissive

Focal plane at 100mK

B-modes from space -2019

Focal plane configuration

B-modes from

space -2019

LiteBIRD Mission

Frequency coverage

+

4 bands

B-modes from space -2019

flight calibration

