

Planck legacy results and tensions

- Planck 2018 results. I. Overview, and the cosmological legacy of Planck
- Planck 2018 results. II. Low Frequency Instrument data processing
- Planck 2018 results. III. High Frequency Instrument data processing
- Planck 2018 results. IV. CMB and foreground extraction
- Planck 2018 results. VI. Cosmological parameters
- Planck 2018 results. VIII. Gravitational lensing
- Planck 2018 results. X. Constraints on inflation
- Planck 2018 results. XI. Polarized dust foregrounds (submitted)
- Planck 2018 results. XII. Galactic astrophysics using polarized dust emission
- Planck 2018 results. V. Legacy Power Spectra and Likelihoods (Aug. 2019)
- Planck 2018 results. VII. Isotropy and statistics
- Planck 2018 results. IX. Constraints on primordial non-Gaussianity CMB likelihoods with likelihood paper.

http://www.cosmos.esa.int/web/planck/publications

Silvia Galli

IAP

on behalf of the Planck Collaboration

MPA 16/12/2019

The Planck satellite

3rd generation full sky satellites (COBE, WMAP) Launched in 2009, operated till 2013. 2 Instruments, 9 frequencies.

 22 radiometers at 30, 44, 70 Ghz.

HFI:

- 50 bolometers (32 polarized) at 100, 143, 217, 353, 545, 857 Ghz.
- 30-353 Ghz polarized.

- 1st release 2013: Nominal mission, 15.5 months, Temperature only (large scale polarization from WMAP).
- 2nd release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization, large scale pol. from LFI.
 Intermediate results 2016: low-l polarization from HFI
- 3nd release 2018: Full mission, improved polarization, low/high-l from HFI. Better control of systematics specially in pol., still systematics limited.

Improvement of polarization systematics in 2018

• **Correction of systematics** in polarization (large scales: map-making and sims. Small scales: beam leakage (improved TE by $\Delta\chi^2=37$) and polarization efficiency corrections (improved TE by $\Delta\chi^2=50$). Changes of

Planck 2018 results. V. Legacy Power Spectra and Likelihoods

 Limitations small remaining uncertainties of systematics in polarization (~0.5s on cosmo. parameters) (quantified with alternative likelihood(CAMspec) at high-I which uses different choices than baseline (Plik)).

2018 Power spectra planck TT, TE, EE: different likelihoods at low-I (<30) and high-I (>30). Better systematics modeling in polarization 6000 Not used Low+high-I: some 140 TE 8 changes, but impact on 5000 parameters is almost 70 negligible 4000 $\mathcal{D}_{\ell}^{TT} \left[\mu \mathbf{K}^2 \right]$ $\mathcal{D}_{\ell}^{TE} \; [\mu \mathrm{K}^2]$ 3000 2000 -70 **Beam leakage**, 1000 polarization -4 -140 efficiencies 0 1500 500 2000 10 30 1000 2500 1000 1500 2000 10 30 500 **High-I** Low-l High-l Low-Added bin at L=8-40. Improved 40 0.2 1.6 ΦΦ Map- $[L(L+1)]^2/(2\pi) C_L^{\phi\phi} [10^{-7}]$ making 1.4 30 and sims 1.2 1.0 20 0.1 0.8 10 0.6 Beam leakage, 0.4 0 polarization 0.2 0 efficiencies 100 1000 500 1000 1500 30 2000 10 L **High-I** Low-l

Baseline ACDM results 2018

(Temperature+polarization+CMB lensing)

	Mean	σ	[%]
$\Omega_b h^2$ Baryon density	0.02237	0.00015	0.7
$\Omega_c h^2$ DM density	0.1200	0.0012	1
100θ Acoustic scale	1.04092	0.00031	0.03
au Reion. Optical depth	0.0544	0.0073	13
<pre>In(A_s 10¹⁰) Power Spectrum amplitude</pre>	3.044	0.014	0.7
n _s Scalar spectral index	0.9649	0.0042	0.4
H ₀ Hubble	67.36	0.54	0.8
$\Omega_{\rm m}$ Matter density	0.3153	0.0073	2.3
O ₈ Matter perturbation amplitude	0.8111	0.0060	0.7

Robust against changes of likelihood, <0.5σ.

- Most of parameters determined at (sub-) percent level!
- Best determined parameter is the angular scale of sound horizon θ to 0.03%.
- τ lower and tighter due to HFI data at large scales.
- n_s is 8σ away from scale invariance (even in extended models, always >3σ)
- Best (indirect) 0.8% determination of the Hubble constant to date.

Optical depth to reionization

• τ is a measure of the line-of-sight Thompson scattering rate since reionization.

$$\tau_e(z_r) = \int_0^{z_r} n_e \sigma_T (1+z)^{-1} \left[c/H(z) \right] dz$$

• Causes CMB large scale polarization bump.

Planck 2018: $\tau = 0.0506 \pm 0.0086$ (68% lowE) $z_{re}=7.68 \pm 0.79$ (TTTEEE+lowE)

Planck 2015: $\tau = 0.067 \pm 0.022$ (LFI, TT, TE, EE)

WMAP9: $\tau = 0.089 \pm 0.014 z_{re} = 10.6 \pm 1.1$ (0.067±0.013 if cleaned with Planck 353Ghz)

SROLL2 (Pagano+ 2019) τ= 0.0566+0.0053

- τ measurement robust against model-indep.
 reconstruction of reionization history.
 No evidence of deviation from baseline.
- No evidence for reionization a z>15:

 $\tau(15, 30) < 0.006$ (lowE; flat $\tau(15, 30)$; FlexKnot).

planck

Stability of the results across releases: ACDM planck results 2018 (DR3) vs 2015 (DR2)

TT, TE, EE+lowE 2018 TT, TE, EE+lowP 2015

- Due to change in large scale polarization (optical depth to reionization). ٠
- Due to beam leakage correction (in high-I TE). •
- Due to opposite effect of beam leakage correction and change in optical depth, which almost cancel out.

Neutrino masses

TTTEEE constraint differ in CAMspec by **15%**. Reduced when adding BAO.

• Non-relativistic at late times. At large scales: changes early and late ISW.At small scales: larger Σm_v suppresses lensing. High lensing preference of high-l forces constraint on Σm_v to be tighter.

planck

 Constraint from 2015 improved by about 30% (TT)-50%(TTTEEE) due to lower and tighter τ and change in polarization systematics.

TTTEEE 2019+	
$\tau = 0.05 \pm 0.009$	<0.29 eV
τ=0.05±0.020	<0.34 eV
τ=0.07±0.020	<0.39 eV

 $\sum m_{\nu} < 0.26 \text{ eV} \quad (95\%, Planck \text{ TT,TE,EE+lowE}). \quad [<0.492 (2015 \text{ TTTEEE+lowP})]$ $\sum m_{\nu} < 0.12 \text{ eV} \quad (95\%, Planck \text{ TT,TE,EE+lowE}). \quad [<0.215 (2015 \text{ TTTEEE+lowP})]$ $+ \text{lensing+BAO}. \quad + \text{BAO+lensing})]$

Planck+Cosmic Variance limited τ

Further decreasing the error on τ would not improve further $\Sigma m v$ for Planck power spectra alone, since limiting factor is degeneracy with H₀. When adding BAO to Planck, H_0 degeneracy lifted, constraint on Σm_V could slightly improve to 0.1eV (95% cl). Need better CMB and LSS

τ uncertainty will be a limiting uncertainty for CMB+LSS. Allison+ 2015, Archidiacono+ 2016, Boyle+ 2018

Take away message stable across releases

Λ CDM is a good fit to the data

planck

Likelihood	Multipoles	$\log(\mathcal{L})$	$\chi^2_{ m eff}$	$N_{ m dof}$	PTE
TT, full, binned	30-2508	-380.34	760.68	765	0.54
TE, full, binned	30-1996	-428.68	857.36	762	0.0090
EE, full, binned	30-1996	-371.48	742.96	762	0.68
TTTEEE, full, binned	30-2508	-1172.47	2344.94	2289	0.20
TT, coadded, unbinned	30-2508	-1274.57	2549.14	2479	0.16
TE, coadded, unbinned	30-1996	-1035.77	2071.54	1967	0.050
EE, coadded, unbinned	30-1996	-1028.55	2057.10	1967	0.077
TTTEEE, coadded, unbinned	30-2508	-3328.51	6657.02	6413	0.016
$\overline{\text{Low-}\ell \text{ TT (Commander)} \dots}$	2–29	-11.63	23.25	27	
Low- ℓEE (SimAll)	2–29	-198.02	• • •	27	•••

No evidence of preference for classical extensions of Λ CDM, but a few **curiosities (A_{Lens}, curvature, MG, low-l vs high-l parameters?!)**....

Parameter	TT+lowE	TT, TE, EE+lowE	TT, TE, EE+lowE+lensing	TT, TE, EE+lowE+lensing+BAO
$\overline{\Omega_K}$	$-0.056^{+0.044}_{-0.050}$	$-0.044^{+0.033}_{-0.034}$	$-0.011^{+0.013}_{-0.012}$	$0.0007^{+0.0037}_{-0.0037}$
Σm_{ν} [eV]	< 0.537	< 0.257	< 0.241	< 0.120
$N_{\rm eff}$	$3.00^{+0.57}_{-0.53}$	$2.92^{+0.36}_{-0.37}$	$2.89^{+0.36}_{-0.38}$	$2.99_{-0.33}^{+0.34}$
$Y_{\rm P}$	$0.246^{+0.039}_{-0.041}$	$0.240^{+0.024}_{-0.025}$	$0.239_{-0.025}^{+0.024}$	$0.242_{-0.024}^{+0.023}$
$dn_s/d\ln k$	$-0.004^{+0.015}_{-0.015}$	$-0.006^{+0.013}_{-0.013}$	$-0.005^{+0.013}_{-0.013}$	$-0.004^{+0.013}_{-0.013}$
$r_{0.002}$	< 0.102	< 0.107	< 0.101	< 0.106
w_0	$-1.56^{+0.60}_{-0.48}$	$-1.58^{+0.52}_{-0.41}$	$-1.57^{+0.50}_{-0.40}$	$-1.04^{+0.10}_{-0.10}$

Terminology

~0σ Too good to be true ~1σ Consistency >2σ Curiosity >3σ Tension/Discrepancy >4σ Problem >5σ Crisis?

From KITP conference in Santa Barbara July 2019

CMB lensing and A_{Lens}

- Lensed CMB power spectrum is a convolution of unlensed CMB with lensing potential power spectrum=>smoothing of the peaks and throughs.
- A_L is a consistency parameter, which rescales the amplitude of the lensing potential which smooths the power spectrum.

$$C^{\Psi}_{\ell}
ightarrow A_L C^{\Psi}_{\ell}$$
 Calabrese+ 2008

 $[L(L+1)]^2/(2\pi) C_L^{\phi\phi} [10^{-7}]$

 Lensing is better measured taking the 4point correlation function of the CMB maps, since lensing breaks isotropy of the CMB, giving a non-gaussian signal.

See e.g. Lewis & Challinor 2006

Peak smoothing in the power spectra

- Preference for high A_I from Planck since 2013.
- Unphysical parameter used for consistency check.
- Driven by TT spectrum(2.4 σ).

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, *Planck* TT+lowE),

- Not really lensing, not preferred by CMB lensing reconstruction.
- Preference for higher lensing projects into small deviations in extensions which have analogous effect on lensing (Ω_k , w, Σm_v).
- Adding polarization, A_L degenerate with systematics corrections and thus likelihood used.

 $A_{\rm L} = 1.180 \pm 0.065$ (68 %, *Planck* TT,TE,EE+lowE) $A_{\rm L} = 1.149 \pm 0.072$ (68 %, TT,TE,EE+lowE [CamSpec])

systematics in polarization (as done in our two likelihoods) can impact extensions of Λ CDM at ~0.5 σ level.

Residuals TT

Well behaved residuals, very good χ^2 (unbinned coadded* at I=30-2508 PTE=16% dof=2478).

TT+lowITT+lowE

(lowITTnot shown in this plot)

planck

Residuals of the coadded CMB spectrum, assuming the Λ CDM best fit cosmology and foreground model (coadded~weighted average of foreground cleaned 100x100, 143x143, 143x217 and 217x217 spectra)

 $*[\chi^2$ slightly different because for full-frequency binned

Residuals TT

 A_L is a phenomenological parameter which allows to better fit both the high and low-ell by $\Delta\chi^2 = 5.3$ ($A_L = 1.24 \pm 0.1$) (plus $\Delta\chi^2 = 2.3$ from lowl TT)

- Alens can be used as a tracer of the I<800 vs>800 difference.
- The features which lead the the high Alens could just be due to statistical fluctuations! In other words, Alens might just be fitting noise/cosmic variance.

The difference between low and high-I, the deviation in A_L , Ω_k , w, and MG with Planck power spectra alone all fit similar features in the power spectra.

However, fitting these features with these parameters is in disagreement with other datasets.

Residuals TT

High-I versus low-I curiosity

esa

- Parameters evaluated from I<800 and I<2500, or I<800 vs I>800 are different at the 2-3 σ level (Planck **2015** results. XI. CMB power spectra, likelihoods, and robustness of parameters)
- Overall, shifts are significant at <~2σ level from simulations (Planck collaboration LI 2017, see also Addison+ 2016).
- The low-highl and the Alens deviations are connected.
- We see differences in polarization as well, but error-bars are too large at high-l to be determinant.

Curvature and Dark Energy

- Both curvature $\Omega_k < 1$ and phantom dark energy w<-1 can provide larger lensing amplitude, thus preferred by TTTEEE
- Results from CAMspec differ at ~<0.5σ
 level.
- When adding CMB lensing reconstruction, less preference for deviations, further tightened by BAO.

Curvature

$$\Omega_K = 0.0007 \pm 0.0019$$
 (68 %, TT,TE,EE+lowE +lensing+BAO).

Dark energy equation of state

 $w_a = 0,$ $w_0 = -1.028 \pm 0.032$ (68 %, *Planck* TT,TE,EE+lowE +lensing+SNe+BAO),

planck

Is Alens due to a problem with galactic dust?

planck

- The residuals at **high-l look very similar at 143 and 217** (100 have too poor resolutions).
- Only the deep at I~1450 is larger in 217Ghz than 143Ghz, and could be due just in part to (chance correlations with) galactic dust.

Can A_L solve the H_0 and σ_8 tensions?

Riess+ 2019 $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Joudaki+ 2019 $\mathbf{S_8} = 0.762 + 0.025$

Dland

Planck TT+lowIEE 2018	H _o	S ₈	AL
лСDM	66.88 ± 0.92 [4.2 σ]	0.840 ± 0.024 [2.3 σ]	1.
$\Lambda CDM + Alens$	68.9 ± 1.2 [2.7 σ]	0.788 ± 0.029 [0.6 σ]	1.24±0.096
Planck TTTEEE +lowIEE 2018			
ACDM	67.27 ± 0.60 [4.2 σ]	0.834 ± 0.016 [2.4 σ]	1
∧CDM+Alens	68.28 ± 0.72 [3.6 σ]	0.804 ± 0.019 [1.3 σ]	1.180 ± 0.065

For $H_{0,}$ not that much. Tension remains at the 3.6 σ level.

For $S_{8,}$ it could help, but it does not help in disantangling whether this is a statistical fluctuation in Planck and WL exp., a systematic or new physics.

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

