Modeling Polarized Dust Emission from the 3D ISM with Neutral Hydrogen Data

> Susan E. Clark | Hubble Fellow, Institute for Advanced Study

> > With Brandon Hensley (Princeton)

Clark & Hensley 2019 ApJ 887, 2

Planck mapped the full sky in 353 GHz polarized dust emission.

ESA/Planck Collaboration Planck Int. XIX

S.E. Clark, IAS

Dust polarization encodes the sum over dusty regions along the line of sight.

$$I_{\nu} = \sum_{i} B_{\nu}(T_d) \left[\kappa_{\nu} - \mathcal{R} \kappa_{\nu}^{pol} \left(\cos^2 \gamma - \frac{2}{3} \right) \right]$$
$$Q_{\nu} = \sum_{i} B_{\nu}(T_d) \mathcal{R} \kappa_{\nu}^{pol} \cos(2\theta) \cos^2 \gamma$$
$$U_{\nu} = \sum_{i} B_{\nu}(T_d) \mathcal{R} \kappa_{\nu}^{pol} \sin(2\theta) \cos^2 \gamma$$

Line-of-sight information is not directly accessible from the dust emission.

S.E. Clark, IAS

GALFA-HI: Peek, Babler, Zheng, Clark+ 2018

The goal is a three-dimensional map of the magnetic properties of the neutral ISM. Clark & Hensley 2019

HI4PI: Ben Bekhti+ 2016

S.E. Clark, IAS

The goal is a three-dimensional map of the magnetic properties of the neutral ISM. Clark & Hensley 2019

How does HI structure trace the magnetic ISM?

Benjamin Winkel & HI4PI Collaboration

HI4PI: Ben Bekhti+ 2016

S.E. Clark, IAS

intensity

orientation

velocity coherence

is correlated with

intensity

polarization angle

polarization fraction

S.E. Clark, IAS

HI column traces dust column.

Lenz, Hensley, Doré 2017

S.E. Clark, IAS

orientation

is correlated with

polarization angle

Clark, Peek, Putman 2014 Clark+2015

2. Orientation of HI in narrow spectral channels traces POS magnetic field Clark, Hill+ 2015, PRL

 50°

70° Galactic Latitude

Neutral hydrogen orientation

Starlight polarization: Heiles 2000 S.E. Clark, IAS Planck is noise-dominated!

2. Orientation of HI in narrow spectral channels traces POS magnetic field Clark+ 2015, PRL

 50°

70° Galactic Latitude

Neutral hydrogen orientation

Why does HI structure trace the magnetic field? Anisotropic CNM! Magnetic field of Clark, Peek, Miville-Deschênes 2019

Starlight polarization: Heiles 2000 S.E. Clark, IAS Planck is noise-dominated!

Are the magnetically aligned structures an effect of the turbulent velocity field? No. Small-scale channel map structures are strongly correlated with the FIR. Clark, Peek, Miville-Deschênes 2019

 $-20 \ v_{lsr}[{\rm km/s}] +20$

B-Modes From Space

Linewidth measurements, FIR/NHI correlations, and Na I D absorption are all consistent with cold density structures.

Clark+ 2014 See also: Kalberla+ 2016

Clark+ 2019

Peek & Clark 2019

Clark 2018

velocity coherence

is correlated with

polarization fraction

S.E. Clark, IAS

LOS magnetic field tangling Clark 2018

S.E. Clark, IAS

A new probe of line-of-sight magnetic field tangling Clark 2018

LOS velocity

low fractional polarization

(P.S. to SED modelers: a data-driven way to model frequency decorrelation!)

S.E. Clark, IAS

3. Velocity coherence of HI orientation traces dust polarization fraction.

Clark 2018

Polarization fraction

S.E. Clark, IAS

Model: "magnetically coherent" clouds.

 $\theta = 0$ <u>orientation</u> Lorger positive velocit $+\pi/4$ v_1, θ_1 $+\pi/2$ $-\pi/2$ Longer negative velocity $v_2, heta_2$ $-\pi/4$ 0

Velocity-Orientation Space

Clark & Hensley 2019

S.E. Clark, IAS

Model: "magnetically coherent"-clouds.

Real Space

Velocity-Orientation Space

Clark & Hensley 2019

S.E. Clark, IAS

dusty structures Model: "magnetically coherent"-clouds.

high fractional polarization

low fractional polarization

Clark & Hensley 2019

B-Modes From Space

We compute Stokes Q and U maps as a function of velocity.

 $R(v, \theta)$

$$Q_{\rm HI}(v) = I(v) \sum_{\theta} R(v,\theta) \cos(2\theta)$$
$$U_{\rm HI}(v) = I(v) \sum_{\theta} R(v,\theta) \sin(2\theta)$$

Clark & Hensley 2019

S.E. Clark, IAS

We compute Stokes Q and U maps as a function of velocity.

$$Q_{\rm HI}(v)$$

$$U_{\rm HI}(v)$$

Clark & Hensley 2019

B-Modes From Space

We compute Stokes Q and U maps as a function of velocity.

Clark & Hensley 2019

B-Modes From Space

We integrate our maps over the velocity dimension to compare them to Planck observations.

HI only maps

Planck 353 GHz

Clark & Hensley 2019

B-Modes From Space

Compare derived quantities like the polarization angle, polarization fraction, and polarization angle dispersion function.

HI only maps

Clark & Hensley 2019

B-Modes From Space

These maps are very well correlated with Planck, especially on large angular scales.

Clark & Hensley 2019

S.E. Clark, IAS

Planck measured a non-unity amplitude ratio in the dust E- and B-modes.

See also Planck Int. XXXVIII, Clark+ 2015

We reproduce this in the HI-based maps.

S.E. Clark, IAS

Our maps provide a local estimate of the magnetic field orientation as a function of velocity.

Orientations: Panopoulou+ 2019

Background: Clark & Hensley

S.E. Clark, IAS

The three-dimensional structure of dust and magnetic fields complicates foreground subtraction.

Kogut & Fixsen 2016

Tassis & Pavlidou 2015

What's next? Data-driven predictions of frequency decorrelation. Brandon Hensley's talk

S.E. Clark, IAS

New insights into the magnetic interstellar medium

enable better characterization of the polarized dust foreground

and vice versa.

B-Modes From Space

Neutral hydrogen in the diffuse ISM is well aligned with the ambient magnetic field.

Clark+ 2014 Clark+ 2015

The magnetic alignment is driven by anisotropic cold neutral medium structure. Clark+ 2019

The velocity structure of HI morphology probes line-of-sight magnetic field tangling. Clark 2018

We map magnetic coherence in three dimensions using only HI data. Clark & Hensley 2019, ApJ 887, 2 arXiv:1909.11673

S.E. Clark, IAS