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1 Expansion of the Universe

In this section, we will use Einstein’s General Relativity to derive the equations that describe the

expanding universe. Einstein’s General Relativity describes the evolution of gravitational fields for

a given source of energy density, momentum, and stress (e.g., pressure). Schematically,

[Curvature of Space-time] =
8πG

c4
[Energy density, Momentum, and Stress]

Here, the dimension of “curvature of space-time” is 1/(length)2, as the curvature is usually defined

as the second derivative of a function with respect to independent variables, and for our application

the independent variables are space-time coordinates: xµ = (ct, x1, x2, x3) for µ = 0, 1, 2, 3.

1.1 Space-time Curvature: Left Hand Side of Einstein’s Equation

The coefficient on the right hand side, 8πG/c4, is chosen such that Einstein’s gravitational field

equations reduce to the familiar Poisson equation when gravitational fields are weak and static,

and the space is not expanding: ∇2φN = 4πGρM , where φN is the usual Newtonian potential, and

ρM is the mass density. Let us rewrite it in the following suggestive form:

∇2

(
2
φN
c2

)
=

8πG

c4
(ρMc

2).

Here, as φN/c
2 is dimensionless, and thus the left hand side has the dimension of curvature,

i.e., 1/(length)2. The right hand side contains ρMc
2, which is energy density; thus, G/c4 correctly

converts energy density into curvature. Now, this equation tells us something Newton did not know

but Einstein finally figured out: the second derivative of the dimensionless Newtonian potential

times 2 with respect to space coordinates is the curvature of space, and mass deforms space.

In order to calculate curvature of space-time, we need to know how to calculate a distance be-

tween two points. Of course, everyone knows that, in Cartesian coordinates, the distance between

two points in flat space separated by dxi = (dx1, dx2, dx3) is given by dl =
√

(dx1)2 + (dx2)2 + (dx3)2,

or

dl2 =

3∑
i=1

3∑
j=1

δijdx
idxj , (1)
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where δij = 1 for i = j and δij = 0 for i 6= j. Since space is flat, the curvature of this space is

zero. This is a consequence of the coefficients of dxidxj on the right hand side of equation (1) being

independent of coordinates. In general, when space is not flat but curved, the distance between

two points can be written as

dl2 =

3∑
i=1

3∑
j=1

gij(x)dxidxj , (2)

where gij(x) is known as the metric tensor. Schematically, the curvature of space is given by the

second derivatives of the metric tensor with respect to space coordinates:

Curvature of Space ∼ ∂2gij
∂xk∂xl

.

In General Relativity, we extend this to the curvature of space-time. The distance between two

points in space and time separated by dxµ = (cdt, dx1, dx2, dx3) is given by

ds2 =
3∑

µ=0

3∑
ν=0

gµν(x)dxµdxν , (3)

and

Curvature of Space-time ∼ ∂2gµν
∂xµ∂xν

.

Now, let us get into the gory details! The precise definition of space-time curvature, known as the

Riemann curvature tensor, is given by1

Rµνρσ ≡
∂Γµνσ
∂xρ

− ∂Γµνρ
∂xσ

+
∑
α

ΓανσΓµαρ −
∑
α

ΓανρΓ
µ
ασ, (4)

where Γ is the so-called Christoffel symbol, also known as the affine connection:

Γµνρ ≡
1

2

∑
α

gµα
(
∂gαρ
∂xν

+
∂gνα
∂xρ

− ∂gνρ
∂xα

)
. (5)

The metric tensor with the superscripts, gµα, is the inverse of the metric tensor, in the sense that∑
α

gµαgαν = δµν ,

where δµν = 1 for µ = ν and zero otherwise.

Question 1.1: For an expanding universe with flat space, the distance between two points in

space is given by, perhaps not surprisingly,

dl2 = a2(t)
3∑
i=1

3∑
j=1

δijdx
idxj , (6)

1Different definitions of curvature are used in the literature. Here, we follow the definition used by Misner, Thorne,

and Wheeler, “Gravitation” (1973). Steven Weinberg’s recent textbook, “Cosmology,” uses the opposite sign.
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where x denotes comoving coordinates. The scale factor, a(t), depends only on time t. Then,

the distance between two points in space-time is given by

ds2 = −c2dt2 + dl2

= −c2dt2 + a2(t)
3∑
i=1

3∑
j=1

δijdx
idxj . (7)

Non-zero components of the metric tensor are

g00 = −1; gii = a2(t) for i = 1, 2, 3,

and those of the corresponding inverse are

g00 = −1; gii =
1

a2(t)
for i = 1, 2, 3.

This metric is known as the Robertson-Walker metric (for flat space), and describes the distance

between two points in space-time of a homogeneous, isotropic, and expanding universe. For this

metric, non-zero components of the affine connection are Γij0 and Γ0
ij . Calculate Γij0 and Γ0

ij . The

answers will contain a, ȧ/c, and δij . Once again, our space-time coordinates are xµ = (ct, x1, x2, x3).

Question 1.2: Einstein’s field equations do not use all the components of the Riemann tensor,

but only use a part of it. Specifically, they will use the so-called Ricci tensor:

Rµν ≡
∑
α

Rαµαν

=
∑
α

(
∂Γαµν
∂xα

−
∂Γαµα
∂xν

)
+
∑
αβ

(
ΓβµνΓαβα − ΓβµαΓαβν

)
, (8)

and the Ricci scalar:

R ≡
∑
µν

gµνRµν . (9)

For the above flat Robertson-Walker metric, non-zero components of the Ricci tensor are R00 and

Rij . Calculate R00, Rij , and R. The answers will contain a, ȧ/c, ä/c2, and/or δij .

Question 1.3: The left hand side of Einstein’s equation is called the Einstein tensor, denoted

by Gµν , and is defined as

Gµν ≡ Rµν −
1

2
gµνR. (10)

Calculate G00 and Gij .
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1.2 Stress-Energy Tensor: Right Hand Side of Einstein’s Equation

The precise form of Einstein’s field equation is

Gµν =
8πG

c4
Tµν , (11)

where Tµν is called the stress-energy tensor (also sometimes called “energy-momentum tensor”).

As the name suggests, the components of Tµν represent the following quantities:

• T00: Energy density,

• T0i: Momentum, and

• Tij : Stress (which includes pressure, viscosity, and heat conduction).

For a perfect fluid, the stress-energy tensor takes on the following specific form:

Tµν = Pgµν + (ρ+ P )
(
∑

α gµαu
α)(
∑

β gνβu
β)

c2
, (12)

where ρ and P are the energy density and pressure, respectively, and uµ is a four-dimensional

velocity of a fluid element. The spatial components of a four velocity, ui, represent the usual 3-

dimensional velocity of a fluid element, while the temporal component, u0, is determined by the

normalization condition of uµ:

gµνu
µuν = −c2. (13)

Note that the 3-dimensional velocity, ui, does not contain the apparent motion due to the expansion

of the universe, but only contains the true motion of fluid elements.

Question 1.4: In a homogeneous, isotropic, and expanding universe, fluid elements simply

move along the expansion of the universe, and the 3-dimensional velocity vanishes. (In other

words, fluids are comoving with expansion.) Therefore, such a fluid element has ui = 0, and the

normalization condition gives u0 = c. Non-zero components of the stress-energy tensor are T00 and

Tij . Calculate T00 and Tij for the flat Robertson-Walker metric and comoving fluid.

Question 1.5: Now, we are ready to obtain Einstein’s equations. First, write down G00 =

(8πG/c4)T00 and Gij = (8πG/c4)Tij for the flat Robertson-Walker metric and comoving fluid in

terms of a, ȧ/c, ä/c2, and/or δij . Then, by combining these equations, obtain the right hand side of

ȧ2

a2
=

ä

a
=

The first equation is the Friedmann equation, and the second one is the acceleration equation that

we have learned in class (with c = 1).
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1.3 Energy Conservation

Combining the above equations for ȧ/a and ä/a will yield the energy conservation equation, ρ̇ +

3 ȧa(ρ+ P ) = 0. In other words, the energy conservation is already built into Einstein’s equations.

Question 1.6: Alternatively, one can derive the energy conservation equation directly from

the conservation of the stress-energy tensor. In General Relativity, the “conservation” means that

the covariant derivative (rather than the partial derivative) of the stress-energy tensor vanishes.

0 =
∑
αβ

gαβTµα;β ≡
∑
αβ

gαβ

(
∂Tµα
∂xβ

−
∑
λ

ΓλαβTµλ −
∑
λ

ΓλµβTλα

)
. (14)

The energy conservation equation is
∑

αβ g
αβT0α;β = 0, while the momentum conservation equation

is
∑

αβ g
αβTiα;β = 0. Reproduce ρ̇+ 3 ȧa(ρ+ P ) = 0 from

∑
αβ g

αβT0α;β = 0.

1.4 Cosmological Redshift

Consider a non-relativistic particle, which is moving in a gravitational field with a 3-dimensional

velocity of ui � c. The other external forces (such as the electromagnetic force) are absent.

According to General Relativity, the equation of motion of such a particle is

dui

dτ
+
∑
αβ

Γiαβu
αuβ = 0, (15)

where dτ ≡
√
−ds2/c is called the proper time. The four-dimensional velocity is given by uµ =

dxµ/dτ ; thus, u0 = cdt/dτ and ui = dxi/dτ .

Question 1.7: Using the affine connection for the flat Robertson-Walker metric, rewrite the

equation of motion in terms of u̇i = dui/dt, ȧ/a and ui. Show how ui changes with the scale factor, a(t).
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2 Cosmic Microwave Background - I

While the speed of light is kept for completeness below, you may set c = 1 if you wish.

2.1 Propagation of photons in a clumpy universe

How does the momentum of photons change as photons propagate through space? First, every

photon suffers from the mean cosmological redshift, and thus its magnitude, p, will decrease as

p ∝ 1/a. In addition, as photons pass through potential wells and troughs, they gain or lose

momentum. Finally, not only the magnitude, p, but also the direction of momentum, γi, will

change when photons are deflected gravitationally.

We can calculate the evolution of four-dimensional momentum, pµ ≡ dxµ/dλ, using the following

geodesic equation:
dpµ

dλ
+
∑
αβ

Γµαβp
αpβ = 0. (16)

Here, λ is a parameter which gives the location along the path of photons. Using p0 = d(ct)/dλ,

one may rewrite the geodesic equation in terms of the total time derivative of pµ:

dpµ

dt
+ c

∑
αβ

Γµαβ
pαpβ

p0
= 0. (17)

In order to calculate Γµαβ, we need to specify the metric. To describe a clumpy universe, we

perturb the Robertson-Walker metric in the following way:

ds2 = −[1 + 2Ψ(t, xi)]c2dt2 + a2(t)[1 + 2Φ(t, xi)]
∑
ij

δijdx
idxj . (18)

Here, Ψ is the usual Newtonian potential (divided by c2 to make it dimensionless), and Φ is called

the curvature perturbation. For this metric, all of the components of Γµαβ are non-zero.

From now on, we will assume that the magnitudes of these variables are small: |Ψ| � 1 and

|Φ| � 1, and calculate everything only up to the first order in these variables.

Question 2.1: Calculate Γ0
00, Γ0

0i, Γ0
ij , Γi00, Γi0j , and Γijk, up to the first order in Φ and Ψ. You

may use the short-hand notation such as

Ψ̇ ≡ ∂Ψ

∂t
, Ψ,i ≡

∂Ψ

∂xi
.

The components of the metric and its inverse are given by

g00 = −(1 + 2Ψ); g00 = −(1− 2Ψ); gij = a2(1 + 2Φ)δij ; gij =
1

a2
(1− 2Φ)δij . (19)
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Question 2.2: Write down the geodesic equations in the following form:

dp0

dt
= . . . ,

dpi

dt
= . . . ,

up to the first order in Φ and Ψ. The final answers should not contain
∑

ij δijp
ipj . You can eliminate

this by using the normalization condition for momentum of massless particles,
∑

αβ gαβp
αpβ = 0,

which gives, for the above perturbed metric,

a2
∑
ij

δijp
ipj = (1− 2Φ + 2Ψ)(p0)2. (20)

Question 2.3: Now, we want to derive the evolution equations for the magnitude of momentum,

p, and its direction, γi. First, we define the magnitude as

p2 ≡
∑
ij

gijp
ipj . (21)

Also, we normalize the direction such that∑
ij

δijγ
iγj = 1. (22)

Using this information, write p in terms of p0 and Ψ , and write γi in terms of p, pi, a, and Φ ,

up to the first order in Φ and Ψ.

Question 2.4: Write down the geodesic equations in the following form:

dp

dt
= . . . ,

dγi

dt
= . . . ,

up to the first order in Φ and Ψ. The answers should not contain p0 or pi. Whenever you

find them, replace them with p and γi, respectively. You can check the result for the deflection

equation, dγi/dt, by making sure that the result satisfies
∑

i γ
idγi/dt = 0. (You can derive this by

differentiating the normalization condition,
∑

ij δijγ
iγj = 1, with respect to time.) Note that the

total time derivative of a variable is related to the partial derivatives as, e.g.,

dΦ

dt
= Φ̇ +

∑
i

dxi

dt
Φ,i = Φ̇ +

∑
i

cpi

p0
Φ,i. (23)
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2.2 Perturbed Conservation Equations For A Pressure-less Fluid

Consider the stress-energy tensor for a perfect fluid. We then take the limit that the pressure is

much less than the energy density, which would be a good approximation for a non-relativistic

fluid. The stress-energy tensor for such a pressure-less fluid is

Tµν = ρ
(
∑

α gµαu
α)(
∑

β gνβu
β)

c2
. (24)

As usual, uµ ≡ dxµ/dτ is a four-dimensional velocity and τ is the proper time.

Suppose that the fluid is moving at a non-relativistic physical three-dimensional velocity of

V i � c. By “physical” velocity, we mean

V i ≡ aui = a
dxi

dτ
. (25)

We also expand the energy density into the mean, ρ̄, and the fluctuation around the mean, δ:

ρ = ρ̄(1 + δ). (26)

These perturbation variables, δ and V i/c, are small in the same sense that Φ and Ψ are small. There-

fore, we shall expand everything only up to the first order in Φ, Ψ, δ, and V i/c. For example, Tij
is of order (V/c)2, and thus can be ignored. On the other hand, T0i is of order (V/c), and thus

cannot be ignored unless it is multiplied by other perturbation variables.

Question 2.5: Expand the following conservation equations up to the first order in Φ, Ψ, δ,

and V i/c:

1. Energy conservation equation,
∑

αβ g
αβT0α;β = 0

2. Momentum conservation equation,
∑

αβ g
αβTiα;β = 0

Use the conservation equation for the mean density, ˙̄ρ+3 ȧa ρ̄ = 0, to eliminate the mean contributions

from the above equations, and then rewrite these equations in the following form:

δ̇ = . . . ,

V̇ i

c
= . . . .

2.3 Large-scale Solutions of Einstein Equations During Matter Era

The energy and momentum conservation equations contain four unknown perturbation variables,

δ, V i, Ψ, and Φ. Therefore, we cannot find solutions unless we have (at least) two more equations.

Such equations are provided by perturbed Einstein equations. Don’t worry - you are not asked to
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derive them (though I would not stop you from deriving them). Here are the two equations that

can be derived by combining perturbed Einstein equations:2

k2

a2
Φ̃ =

4πG

c4
ρ̄

(
δ̃ +

3ȧṼ

kc2

)
, (27)

Ψ̃ = −Φ̃. (28)

Here, Φ̃, Ψ̃, δ̃, and Ṽ are all in Fourier space, i.e., Φ̃ = Φ̃(~k, t), Ψ̃ = Ψ̃(~k, t), δ̃ = δ̃(~k, t), and

Ṽ = Ṽ (~k, t), and ~k is the comoving wavenumber vector. They are related to the original

variables in position space by, e.g.,

Ψ̃(~k, t) =

∫
d3xΨ(~x, t)e−i

~k·~x, (29)

Ψ(~x, t) =

∫
d3k

(2π)3
Ψ̃(~k, t)ei

~k·~x. (30)

Here, ~k · ~x ≡
∑

ij δijk
ixj . For example, the left hand side of the first perturbed Einstein equation,

(k2/a2)Φ, came from the Laplacian of Φ:

1

a2
∇2Φ(~x, t) =

1

a2

∫
d3k

(2π)3
Φ̃(~k, t)

(
∇2ei

~k·~x
)

=
1

a2

∫
d3k

(2π)3
Φ̃(~k, t)

(
−k2ei

~k·~x
)
, (31)

where ∇2 ≡
∑

ij δ
ij ∂2

∂xi∂xj
, and k2 ≡

∑
ij δijk

ikj . Also, Ṽ in the right hand side of the first

perturbed Einstein equation is defined as Ṽ (~k, t) ≡ ik̂ · ~̃V (~k, t) (where k̂ ≡ ~k/k is a unit vector),

i.e.,

~∇ · ~V (~x, t) =

∫
d3k

(2π)3
~̃V (~k, t) ·

(
~∇ei~k·~x

)
=

∫
d3k

(2π)3
~̃V (~k, t) ·

(
i~kei

~k·~x
)

(32)

≡
∫

d3k

(2π)3
kṼ (~k, t)ei

~k·~x. (33)

Here, ~∇ · ~V ≡
∑

k V
k
,k.

Now, let us use the above four equations to find solutions for Ψ, Φ, V , and δ. From now on,

we shall drop the tildes on variables in Fourier space for simplicity. It is convenient to change the

independent variable from t to the scale factor, a. Finally, let us define the following variable:

ε(a) ≡ ck

ȧ
, (34)

2To those who wish to derive these results: the first equation can be obtained by combining perturbed G00 =

(8πG/c4)T00 and G0i = (8πG/c4)T0i, while the second equation can be obtained from the traceless part of Gij =

(8πG/c4)Tij .
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which goes as ε ∝
√
a during the matter-dominated era. This quantity is useful, as it is much less

than unity for fluctuations whose wavelength is longer than the Hubble length (≈horizon size):

ε� 1 for super-horizon fluctuations, k � aH/c,

where H = ȧ/a is the Hubble expansion rate. Therefore, we can find large-scale (long-wavelength;

super-horizon) solutions by consistently ignoring higher-order terms of ε.

Question 2.6: Using the Fourier-space variables and ε, show that the energy- and momentum-

conservation equations can be re-written as follows :

δ′ = − ε
a

V

c
− 3Φ′, (35)

V ′

c
= −1

a

V

c
+
ε

a
Ψ, (36)

where the primes denote derivatives with respect to a.

Question 2.7: Using Φ = −Ψ, we now have the following three equations for three unknown

variables:

δ′ = − ε
a

V

c
− 3Φ′, (37)

V ′

c
= −1

a

V

c
− ε

a
Φ, (38)

ε2Φ =
3

2

(
δ +

3V

εc

)
. (39)

Once again, during the matter era, ε ∝
√
a. Solve these equations on super-horizon scales, ε � 1,

and show that non-decaying solutions are given by

δ = 2Φ, (40)

V

c
= −2

3
εΦ. (41)

By “non-decaying solutions” we mean the solutions that go as ∝ an where n ≥ 0. Finally,

show that Φ (and hence Ψ) is a constant and does not depend on a in the super-horizon limit .

Hint: you cannot ignore ε when two different variables are involved, e.g., A+ εB 6= A, because

you do not know a priori how A compares with B. You can ignore the terms of order ε only when

you are sure that ε is compared to order unity, e.g., A′ + A
a + εAa ≈ A

′ + A
a .

Do not use Mathematica to solve these coupled differential equations! Use your brain, please.
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3 Cosmic Microwave Background - II

While the speed of light is kept for completeness below, you may set c = 1 if you wish.

3.1 Temperature Anisotropy From Gravitational Waves

Gravitational waves stretch space as they propagate through space. This deformation of space is

characterized by the following metric:

ds2 = −c2dt2 + a2(t)
∑
ij

(δij + hij)dx
idxj ,

where hij is the so-called tensor metric perturbation. (On the other hand, Φ and Ψ that we

have dealt with before are called “scalar metric perturbations”.) The tensor metric perturbation is

symmetric (hij = hji), traceless (
∑3

i=1 hii = 0), and transverse (
∑3

j=1
∂hij
∂xj

= 0).

At the first-order of perturbations, scalar and tensor perturbations are decoupled, and thus we

can ignore the scalar perturbations when analyzing the tensor perturbations.

Question 3.1: Write down the geodesic equation for p ≡ (
∑

ij gijp
ipj)1/2 with the metric

given above, up to the first order in hij . Then, by integrating the geodesic equation over time,

derive the formula for the observed temperature anisotropy from gravitational waves as

δT

T̄

∣∣∣∣
O

=
δT

T̄

∣∣∣∣
E

+

∫ tO

tE

dt (. . . )

where (. . . ) should contain only ḣij and γi (where γi is the unit vector of the direction of photons,

satisfying
∑

ij δijγ
iγj = 1). Hint: you should check the result by making sure that you can recover

a part of the scalar integrated Sachs–Wolfe effect, −Φ̇, by using the scalar metric perturbation,

hij = 2Φδij . (You cannot recover the terms containing Ψ because g00 = −1 for the above metric.)

From now on, set δT
T̄

∣∣
E = 0.

Question 3.2: Consider a gravitational wave propagating in the z (= x3) direction. For this

special case, the components of the tensor metric perturbation are given by

hij =

 h+ h× 0

h× −h+ 0

0 0 0

 ,

where h+ and h× denote two linear polarization states of a gravitational wave. Using polar coor-

dinates for the propagation direction of photons with respect to the gravitational wave:

γi = (cosφ sin θ, sinφ sin θ, cos θ),
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rewrite the equation for δT
T̄

∣∣
O in terms of

∫
ḣ+dt,

∫
ḣ×dt, and trigonometric functions.

Question 3.3: A gravitational wave with ḣ+ > 0 stretches space in x direction, while that

with ḣ× > 0 stretches space in 45◦ direction (see the figure below). This stretching of space

causes gravitational redshifts and blueshifts in the corresponding directions. Using this picture,

give physical explanations for the result obtained in Question 3.2. (In other words, now that you

have an equation, how much physical interpretation can you get out of this equation?) For example:

in which cases do you find hot (∆T > 0) or cold (∆T < 0), and why?; compare the results for θ = 0

and θ = π/2, and give a physical explanation for the difference; compare the results for φ = 0, π/4,

π/2, and 3π/4, and give a physical explanation for the difference. Use graphics as needed. It is

easier to think about this from a point of view of photons: if you were a photon, how would you

experience redshift or blueshift, depending on the angle between your propagation direction and

the direction of the gravitational wave, or depending on the azimuthal angle?
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Question 3.4: As it is evident from the above figure, a gravitational wave produces a quadrupo-

lar (l = 2) temperature anisotropy. To see this more clearly, it is convenient to define the following

circular polarization amplitudes, hR (right-handed) and hL (left-handed), as

h+ =
1√
2

(hR + hL), (42)

h× =
i√
2

(hR − hL). (43)

Using hR and hL, and the definitions for spherical harmonics, Y m
l , with l = 2:

Y ±2
2 (θ, φ) =

√
15

32π
sin2 θe±2iφ, (44)

Y ±1
2 (θ, φ) = (±1)

√
15

8π
sin θ cos θe±iφ, (45)

Y 0
2 (θ, φ) =

√
5

16π
(3 cos2 θ − 1), (46)

rewrite the equation for δT
T̄

∣∣
O in terms of

∫
ḣRdt,

∫
ḣLdt, and Y m

2 .

3.2 Polarization From Gravitational Waves

Thomson scattering of a quadrupolar temperature anisotropy by an electron can produce linear

polarization. In terms of the Stokes parameters produced by a scattering, Q(θ, φ) and U(θ, φ),
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there is a formula relating the temperature quadrupole to polarization by a single scattering:

Q+ iU = −
√

6

10

∑
m=±2

2Y
m

2 (θ, φ)

∫
dΩ̃

δT

T̄

∣∣∣∣
O

(θ̃, φ̃)Y m∗
2 (θ̃, φ̃), (47)

Q− iU = −
√

6

10

∑
m=±2

−2Y
m

2 (θ, φ)

∫
dΩ̃

δT

T̄

∣∣∣∣
O

(θ̃, φ̃)Y m∗
2 (θ̃, φ̃), (48)

where dΩ̃ = d cos θ̃dφ̃, and 2Y
m
l is a spin-2 harmonics given by

2Y
±2

2 =

√
5

64π
(1∓ cos θ)2e±2iφ, (49)

−2Y
±2

2 =

√
5

64π
(1± cos θ)2e±2iφ. (50)

Note that an electron is at the origin, and photons are scattered by this electron at the origin

into various directions, (θ, φ). In other words, these are the Stokes parameters of polarization that

would be observed by observers at various directions from this electron.

Now, to simplify the analysis, let us assume that we have ∆hR ≡
∫
ḣRdt and ∆hL ≡

∫
ḣLdt at

the origin, and similarly define the linear polarization amplitudes of gravitational waves:

∆h+ ≡ 1√
2

(∆hR + ∆hL), (51)

∆h× ≡ i√
2

(∆hR −∆hL). (52)

Question 3.5: Calculate Q(θ, φ) and U(θ, φ) in terms of ∆h+,× and trigonometric functions.

Question 3.6: Give physical explanations for the results obtained in Question 3.5. For ex-

ample: compare Q and U at θ = π/2 and φ = 0, and explain the origin of the difference; compare

the results at different φ, and give a physical explanation for the behavior. Use graphics as needed.
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For this problem, it is easier to think about this from a point of view of an electron at the ori-

gin: if you were an electron scattering photons into various directions, what polarization would

you produce depending on the scattering direction and the direction of the gravitational wave, or

depending on the azimuthal angle?
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