VII ENTWICKLUNG VON ENGEN DOPPELSTERNEN

31. Grundlagen und Grundbegriffe

31.1. Warum sind Doppelsterne wichtig?

- Doppelsterne sind sehr häufig, ca. 2/3 aller Sterne sind Komponente eines Doppel- oder Mehrfachsystems.
- Absolute Bestimmung von Zustandsgrössen (dynamische Masse, Radius, Leuchtkraft, Effektivtemperatur) der Komponenten möglich (vor allem von M und R).
 - → Wichtig für die Prüfung der Theorie, z.B. M-R-Beziehung und M-L-Beziehung für HR-Sterne (→ Abschnitt 19.7)
- Komponenten von Doppelsternen sind gleich alt. (Einfang eines Sterns durch einen anderen ist viel zu selten, wegen zu geringer Sterndichte und wegen Energie – und Drehimpulserhaltung)
 - → Die beiden Sterne haben i.a. verschiedene Masse (M1≠M2), liegen aber auf der gleichen Isochrone. → Direkte Prüfung der Theorie der Sternentwicklung in den Fällen, wo M1 und M2 bekannt sind.
 - (N.B. Doppelsterne sind für einen quantitativen Vergleich von Theorie und Beobachtung viel besser geeignet als etwa Sternhaufen, wo zwar auch alle Mitglieder gleich alt, die Massen aber unbekannt sind.)
- Der Vergleich von Theorie und Beobachtung liefert ein verwirrendes Ergebnis:
 - z.T. liegen beide Sterne auf der gleichen Isochrone
 - in vielen Fällen jedoch liegen sie offensichtlich nicht auf der gleichen Isochrone. Beispiele:

Algol-Systeme: HR-Stern (M_1) + Riese $(M_2 < M_1)$ Röntgendoppelsterne: Neutronenstern (M_1) + HR-Stern $(M_2 > M_1)$ Kataklysmische Doppelst.: Weisser Zwerg (M_1) + HR-Stern $(M_2 \lesssim M_1)$

Die Anwesenheit eines Begleiters kann die ⇒ Vermutung: Entwicklung merklich verändern

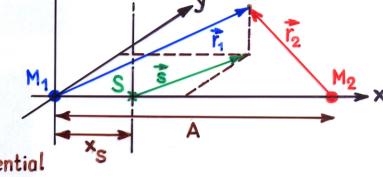
31.2. Das Roche - Potential

Betrachten zunächst zwei Punktmassen M, und M, auf einer Kreisbahn

im Abstand A.

Das Gesamtpotential an einem beliebigen Punkt (x,y,z) im mitrotierenden System ist dann

$$\phi(x,y,z) = -\frac{GM_1}{|\vec{r}_1|} - \frac{GM_2}{|\vec{r}_2|} - \frac{1}{2}|\vec{s}|^2 \omega^2$$



Zentrifugalpotential
$$|\vec{r}_1| = (x^2 + y^2 + z^2)^{1/2}, \quad |\vec{r}_2| = ((A - x)^2 + y^2 + z^2)^{1/2}$$

$$|\vec{s}| = ((x-x_s)^2 + y^2)^{1/2} = \left[\left(x - \frac{M_2}{M_2 + M_2} A \right)^2 + y^2 \right]^{1/2}$$

$$\omega^2 = \frac{G(M_1+M_2)}{A^3}$$
 : 3. Keplersches Gesetz

Führen dimensionslose Koordinaten ein:
$$\xi = \frac{x}{A}$$
; $\eta = \frac{y}{A}$; $\xi = \frac{z}{A}$; $q = \frac{M}{M}$

ϕ_p heisst Roche - Potential

- $\phi_{
 m p}$ ist das Gesamtpotential im mitrotierenden System eines Doppelsterns mit nicht-punktförmigen Komponenten, wenn
 - 1.) kreisförmige Bahn
 - 2.) sphärisch symmetrische Massenverteilung beider Sterne
 - 3.) gebundene Rotation : $\omega_1 = \omega_2 = \omega$
 - 4.) 3 keine weiteren Kräfte (Magnetfeld, Strahlungsdruck)

Das Roche-Modell

Verlauf der Äquipotentialflächen:

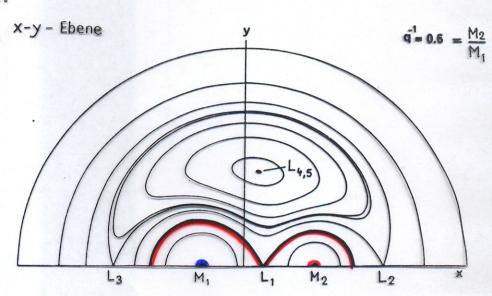
Schnitt senkrecht zur Bahnebene (x-z-Ebene) durch die Äquipotentialflächen in einem Doppelsternsystem mit den Massen M_1 und $M_2=0.5M_1$.

L₁ ist der innere Lagrange-Punkt. Die kritische Roche-Fläche ist als durchgezogene Linie dargestellt. L2 und L3 sind die äusseren Lagrange-Punkte.

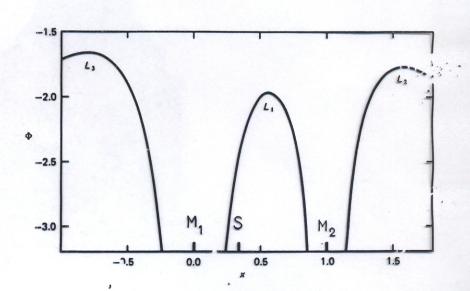
Schnitt in der Bahnebene (x-y-Ebene) durch die Äquipotentialflächen in einem Doppelsternsystem mit den Massen M₁ und $M_2 = 0.6M_1.$

Die äusseren Lagrange-Punkte L, und L, bilden zusammen mit den Massen M_1 und M_2 je ein gleichseitiges Dreieck.

x-z - Ebene L3 q = 2



Verlauf des Roche-Potential auf der Verbindungslinie der beiden Sterne $(\Phi = \Phi(x,0,0))$ für das Massenverhältnis $M_1/M_2 = 2$.



Eigenschaften der Äquipotentialflächen

- in der N\u00e4he der Massenzentren: \u00e4quipotentialfl\u00e4chen sind nahezu Kugelfl\u00e4chen. (Eigengravitation dominiert gegen\u00fcber den Fliehkr\u00e4ften und der Anziehung des Begleiters)
- je grösser die Entfernung von den Massenzentren, desto stärker die Deformation der Äquipotentialflächen (durch Fliehkräfte und Anziehung des Begleiters)
- für einen bestimmten Wert $\phi_R = \phi_1$ berühren sich die Äquipotentialflächen in einem Punkt L, auf der Verbindungslinie der beiden Komponenten $[(x,y,z)=(x_1,0,0)=A(\xi_1,0,0)]$. L, heisst <u>innerer</u> Lagrange - Punkt. Bedingung für L,:

$$L_1: \quad \nabla \phi = 0 \quad \Rightarrow \underbrace{\left(\frac{\partial \phi}{\partial x}\right)_{L_1} = -\frac{GM_2}{A^2} \left\{\frac{1}{(1-\xi_1)^2} - \frac{q}{\xi_1^2} + 2(1+q)\xi_1 - 2\right\} = 0}$$

$$\phi_{1} = \phi_{R}(x_{1},0,0) = -\frac{GM_{2}}{A} \left\{ \frac{q}{\xi_{1}} + \frac{1}{1-\xi_{1}} + \frac{1+q}{2} \left(\xi_{1} - \frac{1}{1+q} \right)^{2} \right\}$$

- $ightharpoonup L_1$: kräftefreier Sattelpunkt von ϕ_R zwischen M_1 und M_2
 - für $\phi_{\rm R} > \phi_{\rm l}$ umschliessen die Äquipotentialflächen <u>beide</u> Komponenten
 - bei hinreichend grossem Abstand von den Massenzentren: Fliehkräfte dominieren gegenüber der Gravitation. Gleichheit der Kräfte bei den äusseren Lagrange-Punkten L_2 und L_3 $[(x,y,z)=(x_2,0,0)=A(\xi_2,0,0)]$ und $(x,y,z)=(x_3,0,0)=A(\xi_3,0,0)]$.

$$L_2, L_3: \left(\frac{\partial \phi}{\partial x}\right)_{L_2} = 0$$
, $\left(\frac{\partial \phi}{\partial x}\right)_{L_3} = 0$; $\phi_2, \phi_3 > \phi_1$

<u>Ist das Roche-Potential auf Doppelsterne anwendbar?</u>

- Kreisbahn
- } im Prinzip erfüllbare Bedingungen, aber
- gebundene Rotation
- sphärische Sterne ??

- Für Sterne : P= const., P= const. auf Äquipotentialflächen
- ▶ ausgedehnte Sterne sind deformiert \rightarrow $\phi \neq \phi_{p}$
- ▶ In praktisch allen Sternen ist die Masse stark gegen das Zentrum konzentriert.

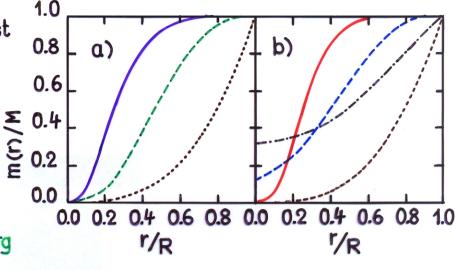
Beispiele:

= = const.

a) --- : Sonnenmodell

---- : 0.9 Mo Weisser Zwerg

b) --- : 4Mo HR-Stern



--- : 4Mo roter Riese ; --- : 4Mo Überriese

→ Das Roche-Potential ist als Näherung brauchbar, da

Abweichungen von der sphärischen Symmetrie nur in den äusseren Schichten (mit rel. wenig Masse) merklich, wenn R≥ 0.2A.

- nukleare Entwicklung (in Radius immer sehr nahe am Zentrum) verläuft ungestört.

31.3. Konsequenzen des Roche-Modells

Jedem der beiden Sterne steht nur ein begrenztes Volumen zur Verfügung!

Das maximale Volumen V_{max} wird durch die Aquipotentialfläche $\phi = \phi_1$ begrenzt. Materie mit $\phi > \phi_1$ kann keinem der beiden Sterne eindeutig zugeordnet werden.

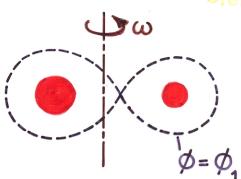
Folge dieser Tatsache:

- Müssen drei grundsätzlich verschiedene Typen von Doppelsternen unterscheiden:
 - a) getrennte Systeme
 - b) halbgetrennte Systeme
 - c) Kontaktsysteme

a) getrennte Systeme:

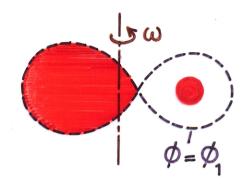
beide Sterne füllen ihr maximal "erlaubtes" Volumen nicht aus.

$$\phi(R_1) < \phi_1$$
 ; $\phi(R_2) < \phi_1$



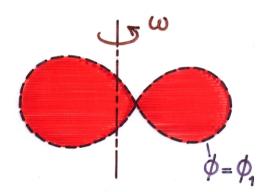
b) halbgetrennte Systeme:

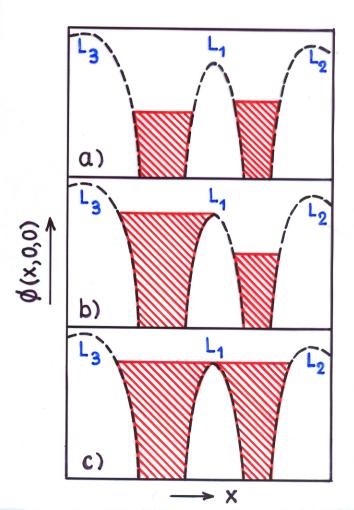
einer der beiden Sterne füllt gerade das maximale, durch $\emptyset = \emptyset_1$ begrenzte, sog. kritische Roche-Volumen aus, der andere Stern ist kleiner



c) Kontaktsysteme:

beide Sterne füllen ihr kritisches Roche-Volumen gerade aus oder überfüllen es (Überkontakt), wobei die Oberfläche durch $\emptyset = const. > \emptyset_1$ gegeben ist.





31.4. Das Algol-Paradoxon

getrennte Systeme: bei der Mehrzahl beide Komponenten auf der HR

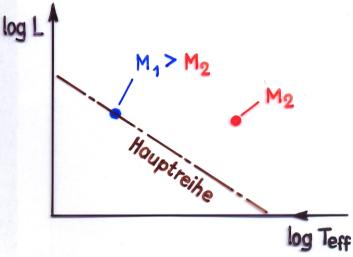
→ Bestimmung fundamentaler Zustandsgrössen

(M, R, L, Teff, etc.) → M-L- und M-R-Beziehung

Kontaktsysteme: sind sehr häufig aber dennoch bis heute theoretisch nicht befriedigend verstanden; Problem: 3 Massenund Energieaustausch in beide Richtungen. Entwicklung im Detail noch unklar, aber langfristig — Einzelstern!

halbgetrennte Systeme: viele haben merkwürdige Eigenschaften

ist auf oder nahe der Hauptreihe, also praktisch unentwickelt,
folgt der M-L-Beziehung und
füllt ihr kritisches Roche-Volumen
nicht aus



die masseärmere Komponente
steht oberhalb (rechts) der Houptreihe, ist für seine Masse überleuchtkräftig, zeigt also Anzeichen
fortgeschrittener nuklearer Entwicklung und füllt ihr kritisches
Roche-Volumen aus

Paradoxon: der massereichere Stern (M₄) müsste weiter entwickelt sein als der masseärmere (M₂), da $\tau_{nuc} \sim \frac{M}{L} \quad \text{und} \quad L \sim M^{-3.5} \quad \text{, also} \quad \tau_{nuc} \sim M^{-2.5}$

in halbgetrennten Systemen ist es umgekehrt!

- Nach dem Prototyp der halbgetrennten Systeme β Perseï = Algol nennt man diesen Befund das <u>Algol-Paradoxon</u>
- ▶ 3 noch wesentlich extremere Formen des Algol-Paradoxons (mit noch stärkerer Diskrepanz in den Entwicklungsphasen)

Beispiele:

- getrennte Systeme aus HR-Stern + Weisser Zwerg , MHR ≤ MWZ

0bjekt	P(d)	M_{WZ}/M_{\odot}	M_{HR}/M_{\odot}
V471 Tau	0.521183	0.71 ± 0.01	0.73 ± 0.03
UU Sge	0.465069	1.1	0.6
KV Vel	0.357113	0.55±0.15	0.25 ± 0.06

- halbgetrennte Systeme:

massereiche Röntgendoppelsterne (HR-Stern + Neutronenstern ; $15\,M_{\odot} \lesssim M_{HR} \lesssim 60\,M_{\odot}\,, M_{NS} \sim 1.4\,M_{\odot}$ massearme Röntgendoppelsterne (HR-Stern + Neutronenstern; $M_{HR} \lesssim 1M_{\odot}$) Kataklysmische Doppelsterne (HR-Stern + Weisser Zwerg , $M_{HR} \lesssim M_{WZ}$)

Entwicklung von Doppelsternkomponenten verläuft offenbar grundsätzlich anders als die von Einzelsternen (obwohl Doppelsternkomponenten "normale" Sterne sind, solange sie sich auf der HR befinden)

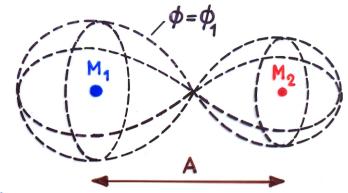
Mögliche Gründe für die andersartige Entwicklung:

- a) Abweichungen von der sphärischen Symmetrie (Es ist jedoch unwahrscheinlich, dass dies der Grund ist, da die wesentlichen Entwicklungsprozesse geometrisch sehr nahe am Zentrum ablaufen, wo die Äquipotentialflächen praktisch kugelförmig sind).
- b) Die Existenz eines maximalen Volumens für jede Komponente (Je nach dem Bahnabstand können sich die Sterne nicht soweit ausdehnen wie es die Einzelsternentwicklung verlangt, ohne dass sie ihr kritisches Roche-Volumen ausfüllen).

31.5. Die Entwicklung zum halbgetrennten System

Betrachten einen Doppelstern mit Komponenten der Massen M_1 und $M_2 < M_1$ im Abstand A.

Annahme: bei t=0 sind beide Sterne auf der ZAMS.



- Da M₁ > M₂: Stern 1 entwickelt sich schneller als Stern 2
- Folge der Entwicklung: R, wird grösser
 - → Wie gross darf der Stern bei gegebenen Werten von M₁, M₂ und A werden, bis er sein kritisches Roche-Volumen ausfüllt?
 - Müssen kritisches Roche-Volumen berechnen:

$$V_{krit} = \int_{\phi = \phi_1}^{dx} dydz = A^3 \int_{\phi = \phi_1}^{d\xi} dyd\xi = A^3 F(q)$$

F(q): kompliziertes Integral (- Z. Kopal: 1959, Close Binary Systems)

- Um entscheiden zu können, ob $V_{\star} \gtrsim V_{krit}$, müsste man den Stern im Roche-Potential rechnen. Für praktische Zwecke geht man einen einfacheren Weg, da man Sterne praktisch immer sphärisch symmetr. rechnet:
- Def: kritischer Roche-Rodius R_R : $V_{krit} = \frac{4\pi}{3} R_R^3$

$$R_{R} = A \left(\frac{3}{4\pi} \int_{\phi = \phi_{1}}^{\phi} d\xi d\eta d\zeta \right)^{1/3} = A f(\varphi)$$

Annahme: Ein realer (3-dim.) Stern füllt sein kritisches Volumen gerade dann aus, wenn für das entsprechende sphärisch symmetrische Modell $R=R_R$ ist.

<u>Eigenschaften des kritischen Roche-Radius</u>

kritischer Roche-Radius des Primärsterns: $R_{1,R} = A f_1(q)$ "Sekundärsterns: $R_{2,R} = A f_2(q)$

$$f_2(q) = f_1(q^{-1})$$
; $f_{1,2}(q)$: tabelliert, z.B. bei Kopal (1959)

Approximationen:

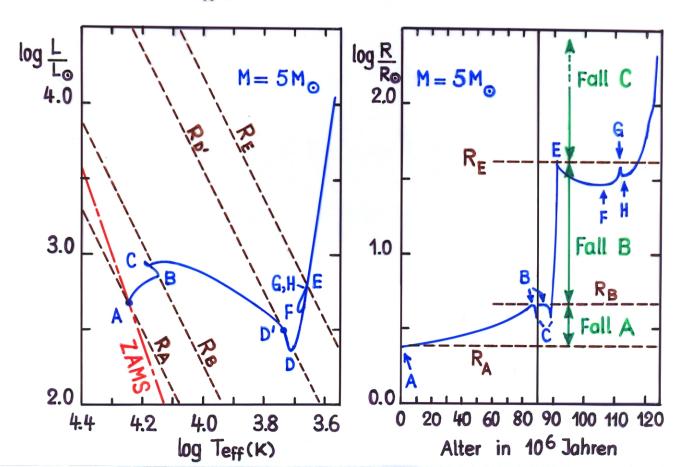
$$f_1(q) = \begin{cases} 0.38 + 0.2 \log q, & q \ge 0.8 \\ \frac{2}{3^{4/3}} \left(\frac{q}{1+q}\right)^{1/3}, & q \le 0.8 \end{cases} \quad (q = M_1/M_2)$$

$$f_1(q) = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1+q^{1/3})}$$
, $\forall q = \frac{M_1/M_2}{1}$

▶ Bei gegebenen Werten von M₁, M₂ und A: Der Primärstern füllt sein kritisches Roche-Volumen aus, wenn

$$R_1 = R_{1,R} = Af_1\left(\frac{M_1}{M_2}\right)$$

Je nachdem, wie gross $R_{1/R}$ (d.h. M_1 , M_2 und A) ist, passiert das in verschiedenen Entwicklungsphasen des Sterns (oder auch gar nicht, wenn $Max(R) < R_R$).



Können nun grob drei Fölle unterscheiden:

- Fall A: Der Stern füllt sein kritisches Roche-Volumen noch während der Phase des zentralen Wasserstoffbrennens aus. (Auf dem Entwicklungsweg zwischen A und B: $R_A < R_R \le R_B$)
- Fall B: Der Stern füllt sein kritisches Roche-Volumen erst nach dem zentralen Wasserstoffbrennen, aber noch vor dem zentralen Heliumbrennen aus. (Auf dem Entwicklungsweg zwischen B und E: $R_B < R_R \le R_E$).

Weitere Unterteilung in

Fall B_r : Stern hat eine radiative Hülle wenn $R = R_R$ (Auf dem Entwicklungsweg zwischen B und D')

Fall B_c : Stern hat eine konvektive Hülle wenn $R = R_R$ (Auf dem Entwicklungsweg zwischen D und E)

Fall C: Der Stern füllt sein kritisches Roche-Volumen erst nach dem zentralen Heliumbrennen aus. (Auf dem Entwicklungsweg nach Punkt H: R_R > Max (R_E, R_H))

Weitere Unterteilung (für Sterne mit M ≤ 8 Mo) in

früher Fall C: R=R_R noch vor Beginn der Thermischen Pulse

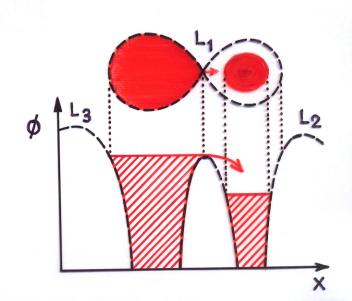
später Fall C: R=RR während der Thermischen Pulse

nächste Frage: was passiert, wenn $R = R_R$ und R > 0 ?

31.6. Stabilität gegen Massentransfer

Was passiert, wenn $R=R_R$ und $\dot{R}>0$?

L₁ ist ein kräftefreier Sattelpunkt von Ø. → Wenn R=R_R (V=V_{krit}) fliesst Materie zum Begleiter (therm. Geschwindigkeit bei L₁ reicht aus).



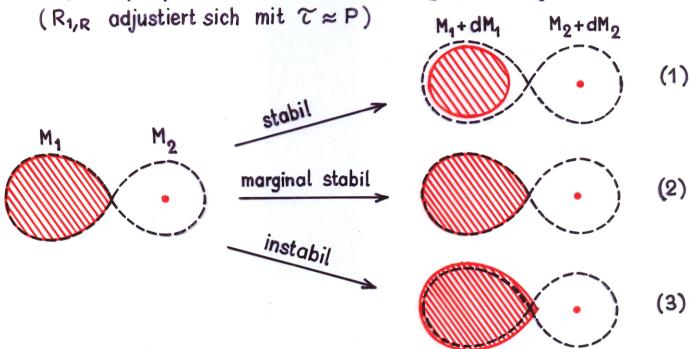
nächste Frage: Was passiert, wenn Masse von einem Stern zum anderen strömt? Verstärkt sich der Massenstrom?

Machen dazu ein Gedankenexperiment

Betrachten einen Doppelstern (M_1 , M_2 , A), in dem $V_1 = V_{krit}$ und $V_2 < V_{krit}$, also $R_1 = R_{1,R}$ und $R_2 < R_{2,R}$. Fragen nun, wie gross R_1 und $R_{1,R}$ nach folgenden Änderungen sind:

$$\begin{pmatrix} M_1 \\ M_2 \\ J \end{pmatrix} \rightarrow \begin{pmatrix} M_1 + dM_1 \\ M_2 + dM_2 \\ J + dJ \end{pmatrix} \rightarrow \begin{pmatrix} R_1 \\ R_{1,R} \end{pmatrix} \rightarrow \begin{pmatrix} R_1 + dR_1(t) \\ R_{1,R} + dR_{1,R} \end{pmatrix}$$

N.B. $dR_1 = dR_1(t)$, do der Stern nicht beliebig schnell adjustiert ist



- Es sind drei Fälle denkbar:
 - Nach dem Massentransfer : R₁(t) < R₁,R → Nach einem kleinen Massenübertrag hört der Massentransfer von selbst auf. → Das System ist stabil gegen Massentransfer
 - 2) Nach dem Massentransfer ist $R_1(t) = R_{1/R}$. \rightarrow Das System ist marginal stabil gegen Massentransfer
 - 3) Nach dem Massentransfer ist $R_1(t)$ formal grösser als $R_{1,R}$. \rightarrow Ein kleiner Massenübertrag führt zur Verstärkung des Massenstroms über L_1 . \rightarrow Das System ist instabil gegen Massentransfer.

Ob ein System stabil oder instabil gegen Massentransfer ist, hängt somit vom Vorzeichen von $\frac{d}{dM_1}(R_{1,R}-R_1)$ ab.

 $\frac{dR_{1,R}}{dM_4}$: hängt von dM_1 , dM_2 und dJ ab

 $\frac{dR_1}{dM_4}$: hängt von M_1 , vom Entwicklungsstand und von der Zeitskala des Massenverlusts ab (\rightarrow Abschnitte 26 und 30)

Betrachten nun den einfachsten Fall:

Stabilität gegen konservativen Massentransfer

konservativer Massentransfer :
$$dM_2 = -dM_1$$
, $dJ = 0$
 $\partial C = M_1 + M_2 = const.$, $J = J_{Bahn} = G^{1/2} \frac{M_1 M_2}{(M_1 + M_2)^{1/2}} A^{1/2} = const.$

Anderung des Roche-Radius' R1,R mit M1:

$$R_{1,R} = A f_1 \left(\frac{M_1}{M_2} \right)$$

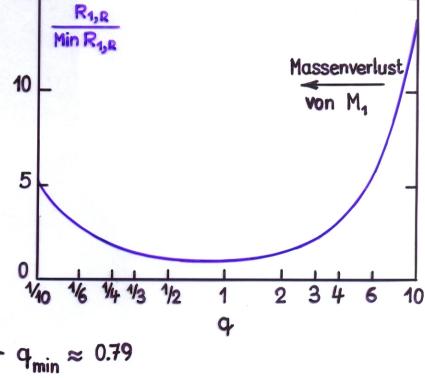
$$R_{1,R}(M_1) = \frac{J^2 WC}{G} \frac{f_1(M_1/WC-M_1)}{M_1^2(WC-M_1)^2}$$

oder

$$R_{1,R}(q) = \frac{J^2}{6000^3} \frac{(1+q)^4}{q^2} f_1(q)$$

Wenn $q > q_{min}$, wobei q_{min} durch die Bedingung

$$\frac{d}{dq} \left\{ \frac{(1+q)^4}{q^2} f_1(q) \right\} = 0 \qquad \Rightarrow q_{min} \approx 0.79$$



gegeben ist, so ist $\frac{dR_{1,R}}{dM_1} > 0$, d.h. der Roche-Radius schrumpft bei Massenverlust

Können jetzt $\frac{dR_{1,R}}{dM_1}$, bzw. $\xi_{1,R} = \frac{d\ln R_{1,R}}{d\ln M_1}$ berechen:

Berechnung von dln R_{1,R} dln M₁

betrachten Massentransfer von $M_1 \rightarrow M_2$

Bahndrehimpuls $J = G M_1 M_2 (M_1 + M_2)^{-\frac{1}{2}} A^{\frac{1}{2}} = G^{\frac{1}{2}} M_1 M_2 (M_1 + M_2)^{-\frac{1}{2}} R_{1,R}^{\frac{1}{2}} f(q)$; $q = \frac{M_1}{M_2}$

$$= \left[\frac{\partial J}{\partial M_{1}} - \frac{\partial J}{\partial M_{2}} + \frac{\partial J}{\partial q} \frac{\partial q}{\partial M_{1}} - \frac{\partial J}{\partial q} \frac{\partial q}{\partial M_{2}}\right] dM_{1} + \frac{\partial J}{\partial R_{1R}} dR_{1R}$$

$$\left(\frac{dR_{1R}}{dM_{1}} \right)_{17} = \frac{\frac{1}{M_{1}+M_{2}} \gamma(1-\gamma) + \gamma \left[\frac{\partial J}{\partial M_{2}} + \frac{\partial J}{\partial Q} \frac{\partial Q}{\partial M_{2}} \right] - \left[\frac{\partial J}{\partial M_{1}} + \frac{\partial J}{\partial Q} \frac{\partial Q}{\partial M_{1}} \right]}{\frac{\partial J}{\partial R_{1/R}}}$$

$$\frac{\left(\frac{d \ln R_{1R}}{d \ln M_{1}}\right)_{27}}{\frac{1+q_{1}}{d \ln M_{1}} + \frac{7q_{1}}{2 \ln M_{2}} \left[\frac{\partial \ln J}{\partial \ln M_{2}} + \frac{\partial \ln J}{\partial \ln M_{2}}\right] - \left[\frac{\partial \ln J}{\partial \ln M_{1}} + \frac{\partial \ln J}{\partial \ln Q} \frac{\partial \ln Q}{\partial \ln M_{1}}\right] }{\frac{\partial \ln J}{\partial \ln R_{1R}}}$$

einfachster Fall : konservativer Massentransfer, d.h. $\eta = 1$

$$\left(\frac{\text{d} \ln R_{1R}}{\text{d} \ln M_1} \right)_{\text{RR}, J} = 2 \left\{ q \left[\frac{\partial \ln J}{\partial \ln M_2} + \frac{\partial \ln J}{\partial \ln Q} \frac{\partial \ln Q}{\partial \ln M_2} \right] - \left[\frac{\partial \ln J}{\partial \ln M_1} + \frac{\partial \ln J}{\partial \ln Q} \frac{\partial \ln Q}{\partial \ln M_1} \right] \right\}$$

$$\left(\frac{d \ln R_{1,R}}{d \ln M_{1}}\right)_{\partial M_{1},J} = 2(q-1) + (1+q)\beta(q) , \quad \beta_{1}(q) = \frac{d \ln f_{1}(q)}{d \ln q}$$

Die Reaktion des Sterns auf Massenverlust wird durch den Masse-Radius-Exponenten

$$\xi_1 = \frac{d \ln R_1}{d \ln M_1}$$

ausgedrückt.

ausgedrückt.

Stabilitätskriterium:
$$\frac{d \ln R_1}{d \ln M_1} - \left(\frac{d \ln R_{1,R}}{d \ln M_1}\right)_{\text{onc},J}$$
 $= 0$ für Stabilität

 $= 0$ für marginale Stabil.

 $= 0$ bei Instabilität

$$\Rightarrow \xi_{1} + 2(1-q) - (1+q) \frac{d \ln f_{1}(q)}{d \ln q} > 0 \quad ; \quad \xi_{1} + 2(1-q_{krit}) - (1+q_{krit}) \frac{d \ln f_{1}}{d \ln q} = 0$$

- → zu gegebenem & 3 q krit : Stabilität ∀q < q krit
- dynamische Stabilität = Stabilität gegen sehr schnellen Massenverlust \rightarrow ξ_1 im Stabilitätskriterium ist $\left(\frac{d\ln R_1}{d\ln M_1}\right) = \xi_s$

erlust mit thermisure 2000. $\Rightarrow \xi_1$ im Stabilitätskriterium ist $\left(\frac{d \ln R_1}{d \ln M_1}\right) = \xi_e$ Stabilität gegen Massenverlust mit thermischer Zeitskala

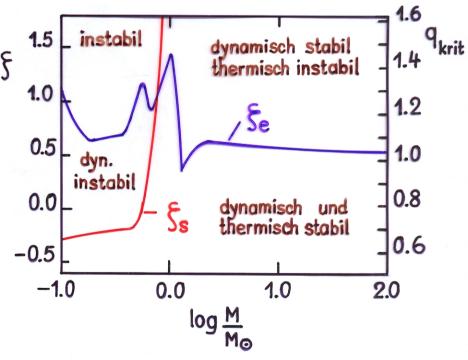
Beispiele:

a) Hauptreihensterne

$$\xi_e \approx 0.5$$
 für M $\gtrsim 1 \text{M}_{\odot}$
 $\approx 0.8-1$ für M $\lesssim 1 \text{M}_{\odot}$
(- Abschnitt 19.7)

ξ < 0 für Sterne mit tiefen äusseren Konvektionszonen, d.h. für M£0.6Mo 5≥1 für Sterne mit

radiativer Hülle, d.h. für M > 0.8 Mo $\xi_s > \xi_e$ für $M \ge 0.8 M_{\odot}$



b) Sterne an der HL mit entartetem Zentrolgebiet

L= L(M_c),
$$\frac{dL}{dM} \approx 0$$
, $0.2 \pm M_c/M \leq 0.95$ (-Abschnitt 26)

Hayashi-Linie :
$$log L = a log T_{eff} + b log M + c$$

Stefan-Boltzmann-Gesetz:
$$L = 4\pi R^2 \sigma T_{eff}^4$$

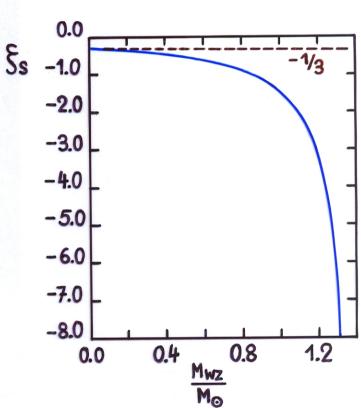
$$\Rightarrow \quad \xi_e = \frac{2b}{a} \lesssim 0$$
 für typische Werte von a und b

$$\xi_s < 0$$
 , $\xi_s \rightarrow -1/3$, für Sterne mit tiefer adiabatischer Konvektionszone (\rightarrow Abschnitt 30)

c) Weisse Zwerge

$$\xi_s$$
: für kleine Masse nicht-rel.
entartet \rightarrow Polytrope n=3/2
 $\rightarrow \xi = -1/3$

für $M \rightarrow M_{CH} \approx 1.4 M_{\odot}$ extrem relativist. entartet \rightarrow Polytrope n = 3



d) für weitere Beispiele - Abschnitt 30.6

Fazit: Für viele Sterntypen ist ξ (ξ_e oder ξ_s) $\lesssim 1$. Da andererseits der massereichere Stern sein kritisches RocheVolumen zuerst ausfüllt, d.h. q > 1 ist, ergeben die meisten Kombinationen (M_1 , $M_2 < M_4$, A) Doppelsterne, die instabil gegen Massentransfer sind.

→ Massentransfer
$$M_1 \rightarrow M_2$$
, Entwicklung mit veränderlicher Masse $(\dot{M}_1 < 0, \dot{M}_2 > 0)$