Tadaria indication

Innerer Aufbau und Entwicklung von Sternen

Teil I

Vorlesung von

Priv. Doz. Dr. H. Ritter und Priv. Doz. Dr. A. Weiss

Max-Planck-Institut für Astrophysik

85741 Garching

Inhaltsverzeichnis

T*/	Seite
Literaturverzeichnis Einleitung	V
Emilerang	VI
Kapitel I: Die Grundgleichungen des Sternaufbaus	1.1
1. Die Massenverteilung im Stern	1.1
2. Die Impulsbilanz	2.1
2.1. Hydrostatisches Gleichgewicht	2.1
2.2. Die Bewegungsgleichung	2.2
2.3. Gestörtes hydrostatisches Gleichgewicht	2.3
2.4. Zwischenbilanz	2.4
3. Energiereservoire — Virialsatz	3.1
3.1. Energiereservoire	3.1
3.2. Der Virialsatz	3.2
4. Der Energiesatz	4.1
4.1. Der Energiesatz in differentieller Form	4.1
4.2. Die integrale Form des Energiesatzes	4.5
4.3. Zusammenhang zwischen Energiesatz und dem Virialsatz in allgemeiner	
4.4. Zeitskalen	4.9
5. Strahlungstransport	5.1
5.1. Abschätzung des Temperaturgradienten	5.1
5.2. Diffusion von Strahlungsenergie	5.2
5.3. Das Rosseland-Mittel der Opazität 5.4. Die Transportgleichung	5.3
5.5. Thermodynamisches Gleichgewicht	5.5 5.6
5.6. Lokales thermodynamisches Gleichgewicht	5.7
5.7. Lösung der Transportgleichung	5.9
5.8. Zusammenhang zwischen Transportgleichung und Energiesatz	5.11
6. Wärmeleitung	6.1
7. Stabilität gegen konvektive Bewegungen	7.1
8. Mischungswegtheorie	8.1
8.1. Die Gleichungen der Mischungswegtheorie	8.1
8.2. Grenzfälle, Definitionen, Effektivität	8.5
8.3. Lösung der Konvektionsgleichungen	8.7
8.4. Abschätzungen für das Sterninnere	8.9
8.5. Zusammenfassung	8.10
9. Chemische Zusammensetzung	9.1
9.1. Definitionen	9.1
9.2. Zeitliche Änderung der chemischen Zusammensetzung in radiativen Ge	bieten 9.1
9.3. Nukleare Zeitskala eines Sterns	9.3
9.4. Änderung der chemischen Zusammensetzung in konvektiven Gebieten	9.3
9.5. Bemerkungen zur Diffusion und Sedimentation	9.4

Kapitel II: Übersicht über das Gesamtproblem	10.1
10. Das System der Grundgleichungen	10.1
10.1. Die Grundgleichungen des Sternaufbaus	10.1
10.2. Zeitliche Ableitungen und Zusammenhang mit Zeitskalen	10.2
10.3. Anfangswerte	10.3
10.4. Die Verkopplung der Aufbaugleichungen	10.4
11. Randbedingungen	11.1
11.1. Randbedingungen im Zentrum des Sterns	11.1
11.2. Oberflächenbedingungen	11.2
11.3. Hüllenlösungen	11.3
11.4. Randbedingungen für numerische Rechenverfahren	11.7
12. Lösung und Lösungen des Systems der Grundgleichungen	12.1
12.1. Die Fit-Methode	12.1
12.2. Die Henyey-Methode	12.2
12.3. Das Vogt-Russel-Theorem	12.13
Kapitel III: Die Materialfunktionen	13.1
13. Die Zustandsgleichung	13.1
13.1. Partialdrucke	13.1
13.2. Ionisation	13.1
13.3. Das mittlere Molekulargewicht	13.3
13.4. Zustandsgleichung des idealen Gases mit Strahlung	13.4
14. Die Entartung des Elektronengases	14.1
14.1. Vergleich zwischen Boltzmann- und Fermi-Verteilung	14.1
14.2. Der Grenzfall schwacher Entartung	14.3
14.3. Der Druck des Elektronengases bei schwacher und mäßiger Entartung	14.5
14.4. Vollständige Entartung	14.5
14.5. Druck des Elektronengases bei vollständiger nichtrelativistischer Entart	ung 14.7
14.6. Druck eines relativistisch entarteten Elektronengases	14.8
14.7. Zusammenfassung	14.9
15. Die Opazität	15.1
15.1. Die wichtigsten Quellen der Opazität	15.1
15.2. Der totale Absorptionskoeffizient	15.3
15.3. Der mittlere Absorptionskoeffizient	15.4
15.4. Analytische Approximationen für κ	15.4
15.5. Wärmeleitung durch Elektronen	15.6
15.6. Ergebnisse numerischer Rechnungen	15.6
16. Nukleare Energieeerzeugung	16.1
16.1. Allgemeines zu den Fusionsreaktionen	16.1
16.2. Thermonukleare Reaktionsraten	16.3
16.3. Bemerkungen zu $\langle \sigma_{12} v \rangle$	16.4
16.4. Fusion von Wasserstoff zu Helium	16.8
16.5. Fusion von Helium	16.12

16.6. Das Kohlenstoff-Brennen	16.14
16.7. Das Neon-Brennen	16.14
16.8. Das Sauerstoff-Brennen	16.14
16.9. Energieerzeugungsraten der höheren Brennen	16.15
	20.20
Kapitel IV: Einfache Sternmodelle	17.1
17. Polytrope Gaskugeln	17.1
17.1. Definitionen	17.1
17.2. Die Emdensche Differentialgleichung	17.2
17.3. Lösungen der Emdengleichung	17.3
17.4. Masse und Radius von Polytropen	17.4
17.5. Der Freiheitsgrad der Lösungen	17.4
17.6. Konstanten der Lane-Emden-Funktionen	17.6
18. Weiße Zwerge	18.1
18.1. Abschätzung charakteristischer Größen	18.1
18.2. Die Masse-Radius- und Masse-Dichte-Beziehung	18.2
18.3. Die Grenzmasse für Weiße Zwerge	18.2
18.4. Zentraltemperatur und Entwicklung von Weißen Zwergen	18.5
18.5. Abkühlzeit von Weißen Zwergen	18.8
19. Hauptreihensterne	19.1
19.1. Allgemeines, Definitionen	19.1
19.2. Masse-Leuchtkraft- und Masse-Radius-Beziehung	19.2
19.3. Die Lage der Hauptreihenmodelle im HRD	19.4
19.4. Durchmischte Entwicklung	19.5
19.5. Zentralwerte für Hauptreihenmodelle	19.6
19.6. Konvektion	19.7
19.7. Vergleich mit numerischen Rechnungen und Beobachtungen	19.9
19.8. Die Entwicklung während des Wasserstoff-Brennens	19.13
20. Die Hayashi-Linie	20.1
20.1. Vollkonvektive Sterne	20.1
20.2. Die Nachbarschaft der Hayashi-Linie	20.6
Kapitel V: Entwicklung von Sternen	21.1
21. Vorhauptreihenentwicklung	21.1
21.1. Sternentstehung: Vom Protostern zum Stern	21.1
21.2. Homologe Kontraktion	21.3
21.3. Entwicklung eines vollkonvektiven Sterns im HRD	21.4
22. Die Entwicklung des Zentralgebiets	22.1
22.1. Zentrales Wasserstoffbrennen, Entstehung einer Schalenquelle	22.1
22.2. Die Schönberg-Chandrasekhar-Grenze	22.3
22.3. Die Kontraktion des Zentralgebiets	22.6
23. Von der Hauptreihe zum Heliumbrennen	23.1
23.1. Das Spiegelungsprinzip	23.1

23.2. Entwicklung von Sternen mit $10M_{\odot} \gtrsim M \gtrsim 2.5M_{\odot}$	
20.2. Entwickling von Sternen int 10M _☉ × M × 2.5M _☉	23.2
23.3. Entwicklung von Sternen kleiner Masse, $M_{\odot} \lesssim 2.5 M_{\odot}$	23.12
23.4. Sterne mit einer Schalenquelle um einen entarteten Kern	23.13
23.5. Thermische Stabilität von nuklearem Brennen	23.23
24. Zentrales Heliumbrennen und spätere Entwicklungsphasen	24.1
24.1. Zentrales Heliumbrennen	24.1
24.2. Entwicklung nach dem zentralen Heliumbrennen	24.3
24.3. Die Kernmasse-Leuchtkraft-Beziehung	24.13
25. Endstadien der Sternentwicklung	25.1
25.1. Weiße Zwerge	25.1
25.2. Neutronensterne	25.4
25.3. Schwarze Löcher	25.7
25.4. Endprodukt der Sternentwicklung in Abhängigkeit der Anfangsmasse	25.8

INNERER AUFBAU UND ENTWICKLUNG VON STERNEN, TEIL I

Literaturliste

Einführungen in den Inneren Aufbau und die Entwicklung von Sternen

- Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution, Astronomy and Astrophysics Library, Springer Verlag, Berlin/ Heidelberg/New York (1990)
- Böhm-Vitense, E.: Introduction to Stellar Astrophysics, Vol. 3, Stellar Structure and Evolution, Cambridge University Press, Cambridge (1992)
- de Loore, C.W.H., Doom, C.: Structure and Evolution of Single and Binary Stars, Kluwer, Dordrecht (1992)
- Hansen, C.J., Kawaler, S.D.: Stellar Interiors Physical Principles, Structure and Evolution, Springer Verlag, Berlin/Heidelberg/New York (1994)
- Huang, R.Q., Yu, K.N.: Stellar Astrophysics, Springer-Verlag, Singapore (1998)

Ergänzende und weiterführende Literatur

- Eddington, A.S.: *Internal Constitution of the Stars*, Cambridge University Press, Cambridge (1988), Ersterscheinung 1926
- Chandrasekhar, S.: An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago (1939), auch als Dover Publication (1958/1967)
- Schwarzschild, M.: Structure and Evolution of the Stars, Princeton University Press, Princeton (1958), auch als Dover Publication (1965)
- Clayton, D.D.: *Principles of Stellar Evolution and Nucleosynthesis*, Mc Graw-Hill Book Company, New York (1968); Neuauflage: The University of Chicago Press, Chicago (1983)
- Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs and Neutron Stars, J. Wiley & Sons, New York (1983)
- Rose, W.K.: Advanced Stellar Astrophysics, Cambridge University Press, Cambridge (1998)
- Padmanabhan, T.: Theoretical Astrophysics, Volume II: Stars and Stellar Systems, Cambridge University Press, Cambridge (2001)
- Cox, J.P., Giuli, R.T.: *Principles of Stellar Structure*; 2. Auflage, Herausgeber A. Weiß, W. Hillebrandt, H.-C. Thomas, H. Ritter, Cambridge Scientific Publishers, Cambridge (2004)
- Salaris, M., Cassisi, S.: Evolution of Stars and Stellar Populations, J. Wiley & Sons, Ltd., Chichester (2005)

Gegenstand der Vorlesung: Innerer Aufbau und Entwicklung von

Def.: Stern: selbstgravitierende Gaskugel grosser Masse

Sternatmosphäre , opt. Tiefe 0 ≤ 7 € 1 Stern < Sterninneres , opt. Tiefe ₹≥1... >>> 1

von aussen unsichtbar

Abschätzung: Masse der optisch dünnen Schicht (1/44r) $I(r+\Delta r) = I(r) e^{-\tau}$ τ ≈ Δr æ g , æ = Opozität , g = Dichte

T≈ 1: Sternoberfläche (Photosphäre)

 $\Delta r \approx \frac{1}{\bar{z}\bar{g}}$ $\Delta M \approx 4\bar{I}R^2\bar{g}\Delta r = \frac{4\bar{I}R^2}{\bar{z}\bar{g}}$

Beispiel: Sonne: $\overline{\mathcal{E}} \approx 1 \text{ cm}^2 \overline{g}^1$, $\overline{g} \approx 10^{-7} \text{ g cm}^3$, $R_0 = 7 \cdot 10^{10} \text{ cm}$ $\Delta r \approx 10^{7} \text{ cm} \approx 10^{-4} R_0$ $\Delta M \approx 10^{23} q \approx 10^{-11} M_{\odot}$

Für praktisch alle Sterne gilt: $\frac{\Delta r}{D} \ll 1$, $\frac{\Delta M}{M} \ll 1$ Braucht daher eine Theorie über den inneren Aufbau von Sternen