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Jets IMPRS June 2013

- Examples

knots, precession, superluminal motion, connection with disks
- magnetic jet model
- problem areas

introduction:
http://www.mpa-garching.mpg.de/~henk/pub/jetrevl.pdf (somewhat old)

current issues:
arXiv:0804.3096

This presentation:
http://www.mpa-garching.mpg.de/~henk/imprsjets.pdf
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Jets observed in:

- protostars

- ‘symbiotic’ binaries

- ‘supersoft’ X-ray sources

- neutron star binaries (Cir X-1)

- black hole binaries (‘microquasars’)

- SS433
- active galaxies

Common: all involve accretion and disks

exceptional case (?) : planetary nebulae
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HH34

‘Herbig-Haro object’
HST
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1000 AU
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Doppler-shifted jet emission ‘SUPer’SOft source’:

\“ v ~ 5000 km /s - accreting WD,
/ \ burning H on its
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C. Motch: The transient jet of the galactic supersoft X-ray source RX J0925.7-4758
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RAqr HST
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Jet precession
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VLA
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SS €33
AGN - - hot Syuk erplm[,of,y
- lack oPorralalion

sk axis oo galochic plan
nkarprotabion :  precession of warped olisk
f1;
:—//V
Wasps by ‘ms#«)a'.CLy due b Lryooliadion

diceck @ rackakion pressure
[: L?djcevso‘ﬂ $s\) Prthqla.'qb')

mdireck 1 ractiakion ~odrivem winal reaelion
( Schomel & Mayar Gy )

DQPLK;L'NQ Co"w\a‘-u,sm / Oq:,(\lg‘g, MEAS quq

Slow precession : apposankly “bat ok

IMPRS 06 - 2013

o

k. o e

S

Friday, 7 June 2013



away from observer

/

k2
-
-
bend: evidence
/ 2 for precession
towards observer: “ /
Doppler-brightened

Quasar 3C175
YLA 6cm image (¢) NRAO 1996
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GRS 1655-40 VLBA (NRAO/AUI)
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Apparent ‘superluminal’ motion
Relativistic kimpmakics ()
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Doppler effect increases
apparent proper motion
of proximal jet (and
slows down distal jet)

Lorentz factor and angle
to line of sight derived
from asymmetric proper
motions and brightness
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M87 Chandra
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CygA RAD
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intergalactic medium
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Cat’s eye nebula
HST

‘ansae’ (=’handles’)
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v ~ 100 km /s
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CRL 618
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Cas A Chandra
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‘Observability’ of the source of the jet

inner radius . angular
of disk scale (7)
ro D 100 7o/D
nearby protostar 373 500 pc 0”003
nearby AGN 10 AU 10 Mpc 00001
galactic BHC 100 km 2 kpc 3107° 7
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HH212 central section
(H2 2.122 microns)

| 2
outflow
o - flow speed from proper motion
pe of knots
-

O Crgce. Yy
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HH212 central section
(H2 2.122 microns)

Next: magnetically powered jets
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Magnetic jets: history

- Schatzman 1962 proposes spindown of the Sun
by magnetic field in the solar wind
- Weber & Davis '67, Mestel ’61-'67 formal
MHD theory developed
- EC. Michel ’69,°73: relativistic wind from pulsars
- 1976: application to jets (Blandford, Bisnovatyi-Kogan &
Ruzmaikin
- Blandford & Payne 1982: selfsimilar model
- ’80s,’90s 2-D (axisymmetric numerical simulations)
- ’00s: 3-D simulations

IMPRS 06 - 2013
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The magnetic model

Gravitation = rotation — magnetic = kinetic

Alfven surface
_ --""- \\\/
Q \\\
.

force free

not force free

pvi B

81t

IMPRS 06 - 2013

Friday, 7 June 2013



IMPRS 06 - 2013

Friday, 7 June 2013



magnetohydrodynamics

www.mpa-garching.mpg.de/~henk/mhdl2.zip

Jets
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Fluid mechanics

fluid density fluid velocity
gravity

\\ m// ‘/

— = -V (Euler equation)
P&; p+pg q

f ‘Eulerian’ time derivative
‘ oy —_r ‘advection’ term
Lagrangian’ time derivative / a
~af_of, X
dt 0Ot

0
_/0 _|_ v . (,OV) — O ‘continuity equation’

ot (= mass conservation)
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Equations of (ideal) MHD

(Gaussian units)

dv 1

= _V —(V xB)xB
P dt P * 4’7'('( )current_|_ P8 w << “
8B Lorentz force

a — V X (V X B) MHD induction equation

2 equations for 2 vectors
no currents, electric fields, charges appear in egs.
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— in a frame comoving with the flow (’U/ =0)
g

F = —v X B/C (arbitrary U/C < 1)

Friday, 7 June 2013



Field amplification by fluid flows

as before: assume perfect conductivity

ANANANANANAA
L] complex fluid motion:
/| A field lines become longer.
( ) Density of field lines T
\! | — field strength T
=0
ANANANANANAA
t=0

Cargese 3-5-13
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‘shear amplification’ of field lines
field initially weak

Field lines bent by the flow exert a restoring force

SHAO 13-6-12
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Alfvéen waves
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torsional Alfvéen wave

Jets
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torsional Alfvéen wave

Jets
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Twisted flux tubes
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Jets
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Twisted flux tube in a field-free plasma

fj-dS:/B-dlzo
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T . magnetic pressure og boundary
imen increases due to B¢

1. the net current along the tube vanishes
2. the tube expands
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Magnetic acceleration

rotation — magnetic — kinetic

region

- Magnetic pressure

- Centrifugal acceleration
- Poynting flux conversion
- ‘Magnetic towers’

Equivalent

‘Coiled s ‘Bead-on-a-wire’

IMPRS 06 - 2013
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Steady, rotating, axisymmetric magnetic flow
- flow accelerated along field lines
- compute asymptotic speed

Model: “Weber-Davis’ (1967)

derivation: Mestel, L. Stellar magnetism, Oxford U Press, 1999
Sakurai, T. 1985, A&A 152, 121

http://www.mpa-garching.mpg.de/~henk/pub/jetrevl.pdf
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Cold Weber-Davis model

Slmpln. Mod(d :

Visualize: equatorial
plane. (Applies at all
latitudes.)
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Cold Weber-Davis model

Cold Weber-Davis model: example
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Cold Weber-Davis model

Shape of the field lines

1 =0.001 n =10

‘centrifugal’ acceleration ‘magnetic push’
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Poynting flux in MHD

S— "ExB (Gaussian units)
A7

in MHD: E — v « B/c

1 B?
S=—DB B)=v, —
— 1B X (vxB)=v, e
BQ
Um = o magnetic energy density
B
Pn=— magnetic pressure
8T

S =v,(um + Pun) ‘magnetic enthalpy flux’
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Poynting flux in MHD

S— "ExB (Gaussian units)
A7

in MHD: E — v « B/c

1 B?
S=—DB B)=v, —
— 1B X (vxB)=v, .
BQ
Um = o magnetic energy density
B
Pn=— magnetic pressure
8T

S =v,(um + Pun) ‘magnetic enthalpy flux’
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Steps in jet formation
1 *launching".
Transition from disk to flow
- how much mass flows into the jet?
2 Acceleration
- magneto-centrifugal picture
- 'push’ from magnetic pressure B;
3 collimation
- how/where does external medium determine
opening angle of flow?

IMPRS 06 - 2013 Jets
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Problem areas and current topics
arxiv.org/abs/0804.3096

- ‘length scales’

- net magnetic flux of a disk
- ‘hoop stress’ collimation

- acceleration ‘by dissipation’
- 3-D stability of jets

- disk-jet transition

Friday, 7 June 2013



length scales (microquasars/X-ray binaries)

Length scales (4 -QSO) ;
10V | 107

|| Internal shocks Collimation
/' Radio emission Dissipative I
Acceleration

S T 10°

Centr%a\agceferatlon ' A
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launching

How much mass is launched?
(In num. simulations: 1 is set by hand)

Depends on
- details of temperature structure of disk atmosphere
— need to know energy dissipation in atmosphere
- strength and inclination of field lines at disk surface

Better defined in hot (near virial) accretion:

flow already ‘loosely bound’ in gravitational potential
— perhaps only radiatively inefficient flows make jets ?

IMPRS 06 - 2013
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launching

How much mass is launched?
(In num. simulations: 1 is set by hand)

Depends on
- details of temperature structure of disk atmosphere
— need to know energy dissipation in atmosphere
- strength and inclination of field lines at disk surface

Better defined in hot (near virial) ag
flow already ‘loosely bound’ in gravi
— perhaps only radiatively inefficie
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Somc  pounk pokeukial Vorrer.

Transition between
disk and jet, the
‘launching region’

s«fu;ou,{,c

D(’s) LAW —> Mw Lou)
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launching

Dependence of mass flux
on strength and inclination of B

Ogilvie and Livio 2001

Alfvén surface

40 20
i/degrees

tension force (outward) reduces rotation rate
— centrifugal force less

— potential barrier increased

Below a minimum field strength no steady flow solutions

IMPRS 06 - 2013 Jets

Friday, 7 June 2013



launching

‘Poloidal’ (p): in a plane containing
the rotation axis
‘toroidal’ = azimuthal ()

Shape of field above the disk
- (well) inside 74 :

Magnetic field dominates over other forces
— field force free, (V xB) x B =10
(well) inside 7a: By < B, , neglect.

- — field approx. potential, V x B =0, B = —-V&,,

- potential field: field lines fan out away from concentrations
(like bar magnets)
— field line shape,
inclination at surface
are global problem

IMPRS 06 - 2013
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inclination governed by different physics!

»l:au( Rl

‘(chQJrsO“ & eout’ﬂas.on r},)?(
g

—

- - — —
- - —

« Inclination cloove olisl
global problowm (Gradt - Shafrowmey. )

- In olskh 1 (yeal bodoumen
m?&»mv\ & qdwce'{wv\

beware: literature confusing
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centrifugal acceleration < collimation

centrifugal acceleration requires field bent outward
— need collimation after acceleration
demanding: AGN jets often < 3 degrees

IMPRS 06 - 2013 Jets
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‘Hoop stress
(V x B) x B :tension along field lines
: pressure L field lines

loop of field lines wants to contract

Field beyond 7" A mostly
azimuthal

contraction towards:

jet ‘collimated by hoop stress’?
‘self-collimation’?

IMPRS 06 - 2013
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collimation

Def.Collimation: angle between flow lines
not width of jet

Magnetic fields are expansive
(<> ‘tensor virial theorem’)

Azimuthal field adds energy density

azimuthal field decollimates

can collimate a jet core, but only
at expense of overall expansion
(cf. E.N. Parker 1979)

collimation ultimately
due to something external

IMPRS 06 - 2013
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Expansive nature of magnetic fields
Useful theorem (‘the vanishing force-free field’):

A field which is force free (V x B) x B =0
everywhere (and finite) vanishes identically

Physics: there has to be a boundary that takes up the
stress in the field and keeps it together.

The twisted field of a magnetically powered jet
is not good for collimation

(beware of the literature)

IMPRS 06 - 2013 Jets
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collimating agents?

- disk surface — toroidal field has to extend all the way from
axis to disk surface

- gas in the star-forming cloud

- material in the broad line outflow (AGN)

- a poloidal magnetic field in (the outer parts of) the disk

- Nothing. Ballistic flow, sideways expansion unconfined.
(relativity helps: sideways expansion reduced by time dilatation)

observed opening angle, nonrelativistic: 0 = Vexpansion/Vjet

(%4 ¢

flow at Lorentz factor I' : ¢/ = fvexp,comoving e
flow of relativistic plasma: (Vexpansion =~ Cs = c/\/g):
1

A —
r'v3 IMPRS 06 - 2013 Jets
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outflow

initial state

9

flow and surroundings
(assume field dominated by B,,:

Pin —I—B;/Sﬂ' — Pext

— toroidal field increases pressure
on boundary of the flow, widens
the flow.

core of flow can be collimated
by tension force in B, but
stress must be taken up by an
external medium

IMPRS 06 - 2013 Jets
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Origin of ‘ordered’ magnetic fields

ordered: - net flux crossing the disk,
- sufficiently strong

How strong can such a field be?
B must be less than orbital KE:

B 1 1P Jo 0 1,70

. < 2pQ r 2 2 r 9 (H)
BZ

Magnetorotational turbulence: L o 2

ST

is suppressed in an ordered external field 5o derea When

2
Bordered > P
ST
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How do ‘good’ field configurations come about!

—~—~
-
&)
S
~
o~
&)
N

R ¢?/(GM)
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divB = 0 :Net magnetic flux ® through the disk surface
cannot change by internal processes.
® can only enter or leave through outer disk boundary.
— net flux is inherited,
or advected in at outer boundary:

0P = /drd¢ r|V x (v x B)|, o = /Bzrdgbdr
v (0, 9, 2) = B(0,9,2) =0
- 0;P = —/dgb Rlv,B, — v.B,]

= V_LBp

IMPRS 06 - 2013 Jets
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McKinney & Gammie
2004 »

20

10 20 30 40
R c*/(GM)

Ordered poloidal flux reflects initial conditions

origin of poloidal flux (if needed) still t.b.d.
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Formation of a magnetic flux bundle through the hole
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Magnetic jets from chaotic field?
Not seen in simulations, so far

Blandfoxd & Payne 1982
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Accretion of external flux

Accretion of ordered (net, poloidal) magnetic flux from environment

If accretion due to
(magnetic) turbulence,
N~ v

Balancing outward diffusion
vs accretion of field, find

Omax ~ H/r
Reason: diffusion acts on curvature of field where it crosses the disk:
HUdiﬁ’“’E& UaCCNV/T
H B,

— accretion of external field difficult in a diffusive disk model

IMPRS 06 - 2013 Jets
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Accretion of external flux

Diffusive disk model.Viscosity 7, magnetic difusion
— no flux accreted
Alternative: patchy magnetic field

seen in MRI simulations
Fromang, Papaloizou. Lesur, Heinemann 2008

Spruit &Uzdensky 2005

IMPRS 06 - 2013
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Why need disks with net magnetic flux?
- geometry good for jets
- could be stronger than internally generated fields

- could be involved as ‘second parameter’ in
the X-ray states of X-ray binaries

IMPRS 06 - 2013 Jets
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Consequences of kink instability
- Flow highly time dependent
- collimation influenced

- dissipation of magnetic energy source for radiation
- increases the flow speed
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R. Moll etal, 2008arXiv0809.3 1 65M
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R. Moll etal, 2008arXiv0809.3165M

t= 0.0 t=504.9
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R. Moll, 2009, A&A 507,1203
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r = 1005

0.2 0 0.2 gljvolren.avi
LI
.j'r‘(t — 654) |

BT(t — O) \ Jets
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gljvolren.avi

Jets
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IMPRS 06 - 2013 Jets
selected field lines at t = 323
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Poynting flux conversion

Steady magnetic outflow, in axisymmetric models, (w0, @, 2)
tend to have poor conversion of Bq%

1
S = v—B?b (per unit area).
4
Integrated over jet cross section: [ — / So9rmodo ~ v Bq%

If the (poloidal) purely radial, 54 ~ 1/ —  Fp ~ cst.

Also: if flow converges/diverges uniformly!
problem worse in relativistic flows.
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Cold Weber-Davis model

at rA still ~ 50% in magnetic energy

IMPRS 06 - 2013
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Magnetic flow acceleration

Does not work well in steady, axisymmetric flow.

Need: a sufficiently steep decline of Bq% with distance z

better:
- (nonsteady:) at the head of the jet: ‘magnetic tower’ picture

- by dissipation of magnetic energy (: nonaxisymmetric)

IMPRS 06 - 2013 Jets
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Flow acceleration by dissipation

plane flow: U(.CIZ), B2 (.CC)
dissipation: a,L,BQ (gj) <0
pressure gradient accelerates in flow direction

faster dissipation steeper gradient

hydro: Bernoulli: %@2 +w=FE, w=p-+e

shock tube analogy
IMPRS 04-2010 GBR
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Poynting flux

C
S=—EXxB
A7 -
E? B?
Sl = @l=— 4 —
Sl=elo-+5-)
BZ
inMHD: £ = —v x B/c, S=v—
47
BZ
magnetic energy flux: Fon=v1 —
87
S =2F, =v| Wy, Wm = Py + em

— max Poynting flux conversion by magnetic dissipation: 50%

IMPRS 04-2010 GBR
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Acceleration mechanism:
comparison 2D vs 3D

both: acceleration is by B(i (not by poloidal component)

centrifugal: equivalent to acceleration by Bczb

accelerating force: F = _ VBczb/BT[ -Bc%/(41'|' r)

steady axisymmetric:
constant opening angle (‘radial’ flow): the two terms cancel exactly

2D: net acceleration by first term due to ‘overdivergence’ in part

of the flow
3D net acceleration by first term due to decay of the toroidal field

SHAO 13 June 2012
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2D @ t=1060 3D @ 803<t<1055, average in ¢
T
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- strong time-dependence due to kink instability
- azimuthal field destroyed after ~ 10 Alfven radii
- if all dissipated magnetic energy radiated,
radiation is about 10% of initial Poynting flux
- acceleration in 3D case similar as in 2D, but
by different mechanism
- central ‘spine’ gets ‘diffused out’in 3D

SHAO 13 June 2012
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Simulations without external field

setup:
- stratified background (‘star’)
- rotating field at center
field consists of closed loops
field strength decreases exponentially from center

application: GRB (collapsar scenario)

SHAO 13 June 2012
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Initial field ~ sin(kO) exp(-ky)
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summary (acceleration)

- steady axisymmetric models need special
conditions for efficient conversion of Poynting flux
to kinetic energy

- problem particularly acute at high Lorentz factors

- efficient conversion requires sufficiently steep
decrease of Bé with distance

possibilities:

- jet head
- decrease of B?b by instability + dissipation (reconnection)

IMPRS 06 - 2013 Jets

Friday, 7 June 2013



