4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

Prior information $I: x \in \mathbb{R}$
Prior knowledge: $q(x):=\mathcal{P}(x \mid I)=$ const.
Updating information $J:\langle x\rangle_{(x \mid J, I)}=m,\left\langle(x-m)^{2}\right\rangle_{(x \mid J, I)}=\sigma^{2}$
Posterior knowledge: $p(x):=\mathcal{P}(x \mid J, I)=\frac{e^{\alpha x+\beta(x-m)^{2}}}{\mathcal{Z}(\alpha, \beta)}$

1. calculate $\mathcal{Z}(\alpha, \beta)$:

$$
\begin{aligned}
\mathcal{Z}(\alpha, \beta) & =\int_{-\infty}^{\infty} d x e^{\alpha x+\beta(\underbrace{x-m}_{=x^{\prime}})^{2}} \\
& =\int_{-\infty}^{\infty} d x^{\prime} e^{\alpha x^{\prime}+\alpha m+\beta x^{\prime 2}}
\end{aligned}
$$

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

$$
\mathcal{Z}(\alpha, \beta)=\int_{-\infty}^{\infty} d x^{\prime} e^{\alpha x^{\prime}+\alpha m+\beta x^{\prime 2}}
$$

Completing the square: $=e^{\alpha m} \int_{-\infty}^{\infty} d x^{\prime} e^{\beta\left(x^{\prime 2}+\frac{2 \alpha x^{\prime}}{2 \beta}+\frac{\alpha^{2}}{(2 \beta)^{2}}\right)-\frac{\alpha^{2}}{4 \beta}}$

$$
=e^{\alpha m-\frac{\alpha^{2}}{4 \beta}} \int_{-\infty}^{\infty} d x^{\prime} e^{\beta\left(x^{\prime}+\frac{\alpha}{2 \beta}\right)^{2}}
$$

Claiming $\beta<0: \quad=e^{\alpha m+\frac{\alpha^{2}}{4|\beta|}} \int_{-\infty}^{\infty} d x^{\prime} e^{-|\beta|\left(x^{\prime}-\frac{\alpha}{2|\beta|}\right)^{2}}$

$$
=e^{\alpha m+\frac{\alpha^{2}}{4|\beta|}} \sqrt{\frac{\pi}{-\beta}}
$$

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

2. determine α and β :

$$
\begin{aligned}
\ln \mathcal{Z}(\alpha, \beta) & =\alpha m-\frac{\alpha^{2}}{4 \beta}+\frac{1}{2} \ln \left(\frac{\pi}{-\beta}\right) \\
\frac{\partial \ln \mathcal{Z}(\alpha, \beta)}{\partial \alpha} & =m-\frac{\alpha}{2 \beta} \stackrel{!}{=} m \\
\Rightarrow \alpha & =0 \\
\frac{\partial \ln \mathcal{Z}(\alpha=0, \beta)}{\partial \beta} & =-\frac{1}{2 \beta} \stackrel{!}{=} \sigma^{2} \\
\Rightarrow \beta & =-\frac{1}{2 \sigma^{2}}
\end{aligned}
$$

Insert in $\mathcal{Z}(\alpha, \beta)$:

$$
\mathcal{Z}=\sqrt{2 \pi \sigma^{2}}
$$

4.8 Maximum Entropy with known $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

3. calculate $p(x)=\mathcal{P}(x \mid J, I)$:

$$
\begin{aligned}
P(x \mid J, I) & =\left.\frac{e^{\alpha x+\beta(x-m)^{2}}}{\mathcal{Z}(\alpha, \beta)}\right|_{\alpha=0, \beta=-1 /\left(2 \sigma^{2}\right)} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} \\
& =\mathcal{G}\left(x-m, \sigma^{2}\right)
\end{aligned}
$$

\Rightarrow Maximum Entropy PDF $P(x \mid J, I)$ for known $1^{\text {st }}$ and $2^{\text {nd }}$ moments (and flat prior) is Gaussian distribution

5 Gaussian Distribution

- maximum Entropy solution if only $1^{\text {st }}$ and $2^{\text {nd }}$ moments known
- emerges according to central limit theorem
- mathematically convenient

5.1 One dimensional Gaussian distribution:

$$
\mathcal{G}\left(x-m, \sigma_{x}^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \exp \left(-\frac{(x-m)^{2}}{2 \sigma_{x}^{2}}\right)
$$

5.2 Multivariate Gaussian Distribution

$x=\left(x_{1}, \ldots x_{n}\right)^{\mathrm{t}}$: zero centered independent Gaussian distributed variables
$\sigma_{1}^{2}, \ldots \sigma_{n}^{2}$: corresponding variances
$X=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots \sigma_{n}^{2}\right)$: diagonal covariance matrix

Joint probability: $\mathcal{P}(x)=\prod_{i=1}^{n} \mathcal{P}\left(x_{i}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)$

$$
=\frac{1}{\prod_{i=1}^{n} \sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)=\frac{1}{\sqrt{|2 \pi X|}} \exp \left(-\frac{1}{2} x^{\dagger} X^{-1} x\right)
$$

Multivariate Gaussian: $\mathcal{G}(x, X)=\frac{1}{\sqrt{|2 \pi X|}} \exp \left(-\frac{1}{2} x^{\dagger} X^{-1} x\right)$

Orthonormal transformation

From independent to dependent coordinates

Orthonormal basis transformation in n-dim. space:

$$
\begin{aligned}
& =O x \\
& O^{-1}=O^{\dagger} \\
\Rightarrow & |O|=\left|O^{\dagger}\right|=\left|O^{-1}\right|=1 /|O| \\
\Rightarrow & |O|^{2}=1 \\
\Rightarrow & \|O\|=\left\|O^{\dagger}\right\|=1
\end{aligned}
$$

Conservation of probability mass:

$$
\mathcal{P}(y \mid I) d y=\left.\mathcal{P}(x \mid I) d x\right|_{x=O^{\dagger} y}
$$

From independent to dependent coordinates

$$
\begin{aligned}
\Rightarrow \mathcal{P}(y \mid I) & =\left.\mathcal{G}(x, X)\left\|\frac{\partial x}{\partial y}\right\|\right|_{x=O^{\dagger} y}=\mathcal{G}\left(O^{\dagger} y, X\right) \underbrace{\left\|O^{\dagger}\right\|}_{=1} \\
& =\frac{1}{\sqrt{|2 \pi X|}} \exp (-\frac{1}{2} \underbrace{\left(O^{\dagger} y\right)^{\dagger} X^{-1}}_{x^{\dagger}=y^{\dagger} O} \underbrace{O^{\dagger} y}_{x}) \\
& =\frac{1}{\sqrt{|2 \pi X|}} \exp (-\frac{1}{2} y^{\dagger} \underbrace{O X^{-1} O^{\dagger}}_{Y^{-1}} y) \\
& =\frac{1}{\sqrt{|2 \pi X|}} \exp \left(-\frac{1}{2} y^{\dagger} Y^{-1} y\right)
\end{aligned}
$$

From independent to dependent coordinates

$$
\begin{aligned}
|Y| & =\left|Y^{-1}\right|^{-1} \\
& =\left|O X^{-1} O^{\dagger}\right|^{-1} \\
& =(\underbrace{|O|}_{= \pm 1}\left|X^{-1}\right| \underbrace{\left|O^{\dagger}\right|}_{= \pm 1})^{-1} \\
& =|X|
\end{aligned}
$$

Generic multivariate Gaussian:

$$
\Rightarrow \mathcal{P}(y)=\mathcal{G}(y, Y)=\frac{1}{\sqrt{|2 \pi Y|}} \exp \left(-\frac{1}{2} y^{\dagger} Y^{-1} y\right)
$$

Moments of the multivariate Gaussian

Normalization:

$$
\begin{aligned}
\langle 1\rangle_{\mathcal{G}(y, Y)} & =\int d y 1 \mathcal{G}(y, Y)=\int d x 1 \mathcal{G}(x, X)=1 \\
1 & =\frac{1}{\sqrt{|2 \pi Y|}} \underbrace{\int d y \exp \left(-\frac{1}{2} y^{\dagger} Y^{-1} y\right)}_{=\sqrt{|2 \pi Y|}}
\end{aligned}
$$

$1^{\text {st }}$ Moment:

$$
\begin{aligned}
\langle y\rangle_{\mathcal{G}(y, Y)} & =\int d y y \mathcal{G}(y, Y) \\
& =\int d y^{\prime}\left(-y^{\prime}\right) \mathcal{G}\left(-y^{\prime}, Y\right)\|-\mathbb{1}\| \\
& =-\left\langle y^{\prime}\right\rangle_{\mathcal{G}\left(y^{\prime}, Y\right)}=0
\end{aligned}
$$

Moments of the multivariate Gaussian

$2^{\text {nd }}$ Moment:

$$
\begin{aligned}
& \left\langle y y^{\dagger}\right\rangle_{\mathcal{G}(y, Y)}=\int d y y y^{\dagger} \mathcal{G}(y, Y) \\
& =\int d x \mathcal{G}(x, X) O x x^{\dagger} O^{\dagger} \\
& =O \int d x x x^{\dagger} \mathcal{G}(x, X) O^{\dagger} \stackrel{?}{=} O X O^{\dagger}=Y \\
& \int d x x_{i} x_{j} \mathcal{G}(x, X)=\left[\prod_{k=1}^{n} \int d x_{k} \mathcal{G}\left(x_{k}, \sigma_{k}^{2}\right)\right] x_{i} x_{j} \\
& = \begin{cases}{\left[\int d x_{i} \mathcal{G}\left(x_{i}, \sigma_{i}^{2}\right) x_{i}\right]\left[\int d x_{j} \mathcal{G}\left(x_{j}, \sigma_{j}^{2}\right) x_{j}\right]} & \text { if } i \neq j \\
\int d x_{i} \mathcal{G}\left(x_{i}, \sigma_{i}^{2}\right) x_{i}^{2} & \text { if } i=j\end{cases} \\
& =\left\{\begin{array}{ll}
0 & \text { if } i \neq j \\
\sigma_{i}^{2} & \text { if } i=j
\end{array}=\delta_{i j} \sigma_{i}^{2}=X_{i j} \square\right.
\end{aligned}
$$

Moments of the multivariate Gaussian

$$
\begin{aligned}
\langle y\rangle_{\mathcal{G}(y, Y)} & =0 \\
\langle f(y)\rangle_{\mathcal{G}(y, Y)} & =0, \text { if } f(-y)=-f(y) \\
\left\langle y y^{\dagger}\right\rangle_{\mathcal{G}(y, Y)} & =Y
\end{aligned}
$$

Wick theorem

Wick theorem:

\mathbb{P} : set of all possible ways to partition $\left\{i_{1}, \ldots, i_{2 n}\right\}$ into pairs

$$
\left\langle y_{i_{1}} \ldots y_{i_{2 n}}\right\rangle_{\mathcal{G}}(y, Y)=\left\langle\prod_{j=1}^{2 n} y_{i_{j}}\right\rangle_{\mathcal{G}(y, Y)}=\sum_{p \in \mathbb{P}} \prod_{\left(i^{\prime}, j^{\prime}\right) \in p} Y_{i_{i^{\prime}} i_{j^{\prime}}}
$$

Examples:

- $\left\langle y_{i_{1}} y_{i_{2}}\right\rangle_{\mathcal{G}(y, Y)}=Y_{i_{1} i_{2}}$
- $\left\langle y_{i_{1}} y_{i_{2}} y_{i_{3}} y_{i_{4}}\right\rangle_{\mathcal{G}(y, Y)}=Y_{i_{1} i_{2}} Y_{i_{3} i_{4}}+Y_{i_{1} i_{3}} Y_{i_{2} i_{4}}+Y_{i_{1} i_{4}} Y_{i_{2} i_{3}}$

$$
\begin{aligned}
\Rightarrow \quad\left\langle y_{i}^{2 n}\right\rangle_{\mathcal{G}(y, Y)} & =\frac{(2 n)!}{2^{n} n!}\left(Y_{i i}\right)^{n} \\
\Rightarrow \quad\left\langle y_{i}^{2 n+1}\right\rangle_{\mathcal{G}(y, Y)} & =0
\end{aligned}
$$

Maximum Entropy with known n-dimensional $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

Prior information $I: s \in V$ (e.g. $\mathbb{R}, \mathbb{R}^{n}, C\left(\mathbb{R}^{n}\right)$)
Prior knowledge: $q(s):=\mathcal{P}(s \mid I)=$ const. $=1$
Updating information $J:\langle s\rangle_{(s \mid J, I)}=m,\left\langle(s-m)(s-m)^{\dagger}\right\rangle_{(s \mid J, I)}=S$
Posterior: $p(s)=\frac{1}{\mathcal{Z}} \exp [\sum_{i} \mu_{i}(s-m)_{i}+\sum_{i j} \Lambda_{i j} \underbrace{\left((s-m)_{i}(s-m)_{j}-S_{j i}\right)}_{=B_{j i}(s)}]$

1. calculate $\mathcal{Z}(\mu, \Lambda)$:

$$
\begin{aligned}
\mathcal{Z}(\mu, \Lambda) & =\int d s \exp [\mu^{\dagger} \underbrace{(s-m)}_{s^{\prime}}+\operatorname{Tr}[\Lambda B(s)]] \\
& =\int d s^{\prime} \exp \left[\mu^{\dagger} s^{\prime}+\operatorname{Tr}\left[\Lambda\left(s^{\prime} s^{\prime \dagger}-S\right)\right]\right] \\
& =\int d s^{\prime} \exp \left[\mu^{\dagger} s^{\prime}+s^{\prime \dagger} \Lambda s^{\prime}-\operatorname{Tr}[\Lambda S]\right]=e^{-\operatorname{Tr}[\Lambda S]} \int d s^{\prime} e^{\mu^{\dagger} s^{\prime}+s^{\prime \dagger} \Lambda s^{\prime}}
\end{aligned}
$$

Maximum Entropy with known n-dimensional $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

2. determine μ and Λ :

$$
\ln \mathcal{Z}(\mu, \Lambda)=-\operatorname{Tr}[\Lambda S]+\ln \left(\int d s^{\prime} \exp \left(\mu^{\dagger} s^{\prime}+s^{\prime \dagger} \Lambda s^{\prime}\right)\right)
$$

$$
\begin{aligned}
\frac{\partial \ln \mathcal{Z}(\mu, \Lambda)}{\partial \mu} & =\left(\frac{\partial \ln \mathcal{Z}}{\partial \mu_{i}}\right)_{i}=\frac{\int d s^{\prime} s^{\prime} \exp \left(\mu^{\dagger} s^{\prime}+s^{\prime \dagger} \Lambda s^{\prime}\right)}{\int d s^{\prime} \exp \left(\mu^{\dagger} s^{\prime}+s^{\prime \dagger} \Lambda s^{\prime}\right)} \stackrel{!}{=} 0 \\
\Rightarrow \mu & =0
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial \ln \mathcal{Z}(\mu, \Lambda)}{\partial \Lambda} & =\left(\frac{\partial \ln \mathcal{Z}}{\partial \Lambda_{i j}}\right)_{i j}=\underbrace{-\left(s_{j i}\right)_{i j}}_{=-S}+\left(\frac{\int d s^{\prime} s^{\prime} s^{\prime} s_{j} \exp \left(s^{\prime \dagger} \Lambda s^{\prime}\right)}{\int d s^{\prime} \exp \left(s^{\prime \dagger} \Lambda s^{\prime}\right)}\right){ }^{i j} \stackrel{!}{=} 0 \\
\Rightarrow S & =\frac{\int d s^{\prime} s^{\prime} s^{\dagger \dagger} \exp \left(-\frac{1}{2} s^{\prime \dagger}\left(-\frac{1}{2} \Lambda^{-1}\right)^{-1} s^{\prime}\right)}{\int d s^{\prime} \exp \left(-\frac{1}{2} s^{\prime \dagger}\left(-\frac{1}{2} \Lambda^{-1}\right)^{-1} s^{\prime}\right)}=\frac{\int d s^{\prime} s^{\prime} s^{\prime \dagger} \mathcal{G}\left(s^{\prime},-\frac{1}{2} \Lambda^{-1}\right)}{\int d s^{\prime} \mathcal{G}\left(s^{\prime},-\frac{1}{2} \Lambda^{-1}\right)} \\
& =-\frac{1}{2} \Lambda^{-1} \Rightarrow \Lambda=-\frac{1}{2} S^{-1}
\end{aligned}
$$

Maximum Entropy with known n-dimensional $1^{\text {st }}$ and $2^{\text {nd }}$ Moments

Insert in $\mathcal{Z}(\mu, \Lambda)$:

$$
\begin{aligned}
\mathcal{Z}(\mu, \Lambda) & =\int d s^{\prime} \exp [-\frac{1}{2} s^{\prime \dagger} S^{-1} s^{\prime}+\frac{1}{2} \operatorname{Tr}[\underbrace{S^{-1} S}_{=\mathbb{1}}]] \\
& =|2 \pi S|^{1 / 2} e^{\frac{1}{2} \operatorname{Tr}[\mathbb{1}]}
\end{aligned}
$$

3. calculate $p(s)=\mathcal{P}(s \mid J, I)$: remember: $s^{\prime}=s-m$

$$
\begin{aligned}
P(s \mid J, I) & =\frac{1}{\sqrt{|2 \pi S|}} \exp \left(-\frac{1}{2}(s-m)^{\dagger} S^{-1}(s-m)\right) \\
= & \mathcal{G}(s-m, S)
\end{aligned}
$$

\Rightarrow use Gaussian distribution $\mathcal{G}(s-m, S)$ given the n-dim. mean m and variance S

