1.5 Probabilistic Reasoning

Adding non-exclusive and non-exhaustive statements:

generalized sum rule: P(A + B) = P(A) + P(B) — P(AB)

Product rule: P(A, B) = P(A|B) P(B) = P(B|A) P(A)

P(A,B) _ P(BJA)P(A)

Bayes’ theorem:  P(A|B) =

P(B) —  P(B)
causes P(B|A
causeA = resultB P(A) (Sl P(A|B)
deduction

P(A|B)  “posterior” probability of A given B

P(A) “prior” probability of A

P(BJA)  “likelihood” for A, probability of outcome of causal process A — B
P(B) “evidence”, normalization constant



1.5.1 Deductive Logic

Does probabilistic reasoning contain the syllogisms of Aristotelian logic?

strong syllogism: / = “A = B” =(i) P(B|AI) = 1, (ii) P(A|BI) = 0
proof: “A = B” = “A = AB” = P(AB|I) = P(A|I)

(i) P(BJAI) = 5280 = 1, (i) P(A[BI) = G = PaEal = 0

unless P(B|I) = 0, which turns r.h.s. into empty statement[]

weak syllogism: / = “A = B” = P(A|BI) > P(A|l)
proof: P(B|AI) = 1 was shown above

P(A|BI) = PELLEAD — ZE > P(A|l) since P(B|T) < 10

weaker syllogism: J = “B = A more plausible”, P(A|BJ) > P(A|J)
claim: J = “A = B more plausible”, P(B|AJ) > P(B|J)

proof: P(BIAJ) = ’;(é“fj’)) P(BJ) > P(BIJ) O
1




1.5.2 Assigning Probabilities

I background information, Ay, ... A, mutually exclusive, exhausting /
= “one and only one A; with ie{1,... n}istrue”, >\ | P(A;|[l) =1

If knowledge in I about Ay, ... A, is symmetric = P(A;|I) = P(A;|I)

1
uniform probability distribution: P(A;|B) = —
n

Laplace’s principle of the insufficient reason

Canonical examples:
> P(3 | fair die) = |
> P(@ | loaded die) = ¢
» P(@ | previous results, loaded die) may differ from 1/6

= Conditional probabilities describe learning from data.



1.6 Statistical Inference

1.6.1 Measurement process

. measurement .
physical state = resulting data
inference
reality
Q Potential problems:
data
< Freasurement » Theory incorrect.
d » Theory insufficient for reality.
measurement model

» Data is not uniquely determined,

P(d|s) # 6(d = R(s)).

» Signal is not uniquely determined,

P(sld) # 6(s — s*(d)).

theory/signal



1.6.2 Bayesian Inference

I=background information: on signal s, on measurement yielding data d
I assumed impicitly in the following, P(s) := P(s|I) etc.

P(d, s) B P(d|s)
pd) ) |

Sloppy notation: P(s) = P(Syar = Sval|l), Svar unknown variable, sy, concrete value

Bayes’ theorem: P(s|d) =

Observations:
» Joint probability P(d, s) decomposed in likelihood and prior
» Prior P(s) summarizes knowledge on s prior to measurment

» Likelihood P(d|s) describes measurement process, updates prior, P(s) ) P(s|d)
» Evidence P(d) = ), P(d, s) normalizes posterior

B Pds) _ >, Pd;s) _
Z P(s|d) = ZS: Pd) >, Pds)

N



Picturing Bayesian Inference

d obs

Observations:

» After measurement only hyperplane
d = d° relevant

» Any deduction relying on unobserved
data @™k =£ g°% is suboptimal,
inconsistent, or just wrong

P

» Normalization of restricted probability
P(d = d°, s) by area under curve:

X, Pd.5) = Pd)




1.7 Coin tossing

1.7.1 Recognizing the unfair coin
I} = “Outcome of coin tosses stored in data d = (d;, da, .. .),
d; € {head, tail} := {1,0} of i toss, ") = (d, ... d,) = data up to toss n”

Question 1: What is our knowledge on d(!)

= (d,) given I,?
Due to symmetry in knowledge: P(d; = 0|I}) =

P(dy = 1]I,) = 1)2
Question 2: What is our knowledge about d,, | given d("), L?

P(d(n+l)|ll) Wlth d(n+]) — (dn+1,d(n+l))

P(dyi1]d™, 1) = P

I} symmetric w.r.t. 2" possible sequences d) € {0, 1}" of length n = P(d"™|I;) = 27"

P(dpr|d™, 1) = —— = =



Statistical Independence

Given [, the data d™ contains no useful information on dy+1. What did we miss?
It seems I; = “All tosses are statistically independent of each other.”

A and B statistically independent under C < P(A|BC) = P(A|C)
= P(AB|C) = P(A|BC) P(B|C) = P(A|C) P(B|C)

Additional information /, = “Tosses done with same coin, which might be loaded,
meaning heads occur with frequency f~
Jf € [O, 1] :VieN: P(d,' = 1[f,]1,]2) =f,1=1LD

f di =1

P(div, I) = {1 —f od—0 :fdi (1 —f)l—di



1.7.2 Probability Density Functions

Question 3: What do we know about f given I and our data d") after n tosses?
f is a continuous parameter!

Notation: P(f € F|I) with F C Q. In the above case 2 = [0, 1]
P(f € F|I) must increase monotonically with [F| = [.df 1 until P(f € Q|I) = 1
If I symmetric for Vf € (2 we request

_ L e

P(f € F|I) := o = L

If / implies weights w : Q — R, we use |F|,, := [, df w(f)

P(f € FII) == "Q‘: - ﬁfl];v;g% - /FdfP(ﬂ I

P(fII) := w(f)/|S. is called probability density function (PDF)




Normalization of PDFs
Normalization:

1wemnzég¢m0:/#éﬁ gt:1

Coordinate transformation: 7 : F — F', T~!: F' s F with F' = T(F)

Coordinate in-variance of probabilities: P(f € F|I) = P(f" € F'|I) with ' =

jéﬁmm) /menmeQ

=P¢ln = P4

df' |l p=r-1 (1)

PDF are not coordinate invariant!

T(f)



Bayes Theorem for PDFs

Joint PDFs: P(x, y|I) joint PDF of x € Rand y € R, i.e.

PxeX,yeY|):= /dx/dyP(x,yU) forvX,Y CR
x Jy

Marginal PDF: P(x|I) := /dyP(x,yI) PO = /de(x,y]I)

P(x, y|I) P(x, y|I)
P P(x|1)

Conditional PDF: P(x|y,I) := Pylx,I) =

= product rule for PDFs: Px,y|[I) = Pxly, )P (y|I) = P(ylx, )P (x|I)
= Bayes theorem for PDFs: Plylx, 1) = W

To be shown: quantities defined above are indeed PDFs



Marginal & Conditional PDFs
Marginalized PDF:

PxeXx|) =

/de(x]I):/dx /dyp(x,yll)
X x Jr

= PlxeX,yeR|l)=PxeX|)

as I =y € R, similarly, P(y € Y|I) = [, dyP(y|I). O

Conditional PDF: e.g. for x conditioned on y (Yyar = Yval)

L PelD) _ fxdePlyll)  Xlp
P(x € X|y,I) = /de (x|y, 1)
PO JadxPleylD)
is ratio of weighted measures, as used to define PDFs. O

(D)
‘R|P (x,y|D)

PDF P(x,y) uniquely defines probabilities P(x € X,y € Y), but reverse is not true



1.7.3 Infering the coin load

Question 3: What do we know about f given I and our data d™) after n tosses?

n=0: PN =1  n=1:Pfld=(1),1) = — D=1 DPUI)

Jo df P(dy = 1If, DP(fII)
n=0, P(f|l)=1 n=1, P(f| d,=1, I)=2f = fx1 = f 2f

Jidrr




Several Tosses

PEM, D P, PE™ S

(n) — =
P (D) Pl |1}
P fin = JIP@lf 0 <=L === -rye
i=1 i=1
#heads =n; =m(d") = d;, #tails =ng=n—n,
i=1
1 1 B/
(n) — () — ny _ £\ — — no- 1
PO = [ arP@ g = [ = = B+ 1) = 228
1
B(a,b) = /dxx”_](l—x)b_lzll:((z)i(:)) HEEN (a(;j_)[!)(b :)'1)' Beta function
0 — 1)

PA™fII) _ (n+1)! o
P~ mingt ! 1)

P(fld™.1) =




Load Posterior P(f|(ng, n;),I) for Few Tosses

P(fld)




Load Posterior P(f|(ng, ny),I) for Many Tosses

12

(100,100)

P(fld)




Laplace’s rule of succession
Question 2: What is our knowledge about d,, ;| given d("), I1=15"?

P(dpy1 = 1d™ 1)

P(dpiy = 11d™, 1)

P(dyiy = 0|d™, 1)

1
/ dF P(dysr = 1,£]d™, 1)
0

1
/ dfP(dn-H = IV? d(n)vl)P(f’d(n)vl)
0

1
/0 dF FPEAD,T) = () o

(n+1)!
ny! ng!

1
| arta—pyn

(l’l—l- 1)' (n1+1)!n0! o+ 1

n1!n0! (I’H-z)! n—+2

Oy =

(=) fatm ) =

m+1 n
n+2 7 n
n0+1
n—+2

Laplace’s rule can save your life!



Learning Sequence

|
800 1000



1.7.4 Large Number of Tosses
Central limit theorem: P (f|d(™)) becomes Gaussian for g, n; > 1

PUdD. 1) ~ G ~F.op) = —= exp(‘(f_f)2>
1/27TJJ% 2af

Z ny+1
Mean:f = <f> (ﬂd(n) 1) - n+—2

=2

Variance: of = ((f—f)? ) (flamy = (f* - 2ff +f2>(ﬂd(n)) = (fz>(f|d(n>) -f

(m+2)(m+1) ("1+1>2 _fa-fH 1
(n+3)(n+2) n+2)  n+3 n

Gaussian approx. needs f, f to be away from 0 and 1




1.7.5 The Evidence for the LLoad

hypotheses: I = “loaded coin, f € [0, 1]\{3}",J = “a fair coin, f = 3", M =1 +J
hyper-priors for hypotheses: P(I|M) = P(J|M) = 1/2

P(1ld™, M) _ P(d™|I, M) P(I|]M)/P(d")|M)

aposteriort odds: OW™) = 516531 = B a® |y a1) P P 1)
loaded coin evidence: P(d(”)\l ) = (Zl_'i_n(l);,
fair coin evidence: P(d™[J) = 2*1,,
odm) = m

Only heads:

n=n 0] 1|2 |3] 4 5 6 7 8 9 10 100 | 1000

od™y [ 1] 1]45]2]3s|51/3]91/7]| 16| 2849 | 511/5 | 931/11 | 1071 | 10?%




Load Odds for n = 100, 1000
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1.7.6 Lessons Learned

e A ol e

_
e

—_—
[\

—_
W

Probabilities described knowledge states

Frequencies are probabilities if known, P(d = 1|f,I) = f

Joint probability contain all relevant information

Posterior summarizes knowledge of signal given data and model knowledge
Evidence: Signal-marginalized joint probability, “likelihood” for model
Background information matters: P(d,|d"), I) # P(d,1|d™, II,), if I 7 I
Intelligence needs models: coins having a constant head frequency f

Probability Density Functions (PDFs) serve to construct probabilies

Learning & forgetting: Posterior changes with new data, usually sharpens thereby
Sufficient statistics are compressed data, giving the same information as original data
on the quantity of interest, e.g. P(f|d™, I) = P(f|(ng, n1), I)

. Nested models contain each other; fair coin model is included in unfair coin model
. Occam’s razor: Among competing hypotheses, the one with the fewest assumptions

should be selected.

. Uncertainty of an inferred quantity may depend on data realization



1.8 Adaptive Information Retrieval

1.8.1 Inference from adaptive data retrieval
Data d") = (d, .. .d,) to infer signal s taken sequentially.
Action g; chosen to measure d; via d; <= P(d;|a;, s) can depend on previous data d=1 via
data retrieval strategy function A : di=1 = q;.

> A predetermined strategy is independent of the prior data: A(d @ *1)) = q;

irrespective of di=1

> An adaptive strategy depends on the data: 3i, dV~1, @’0=D . A(@U=1) #£ A(d'0D)

New datum d; depends conditionally on previous data 4~ through strategy A,

P(di|a;,s) = P(di|A(d"V), s) = P(di|d" "), A, s)
Likelihood of the full data set d = d™:
P(d’Aa S) = P<dn’d(n71)7 A, S) e P(d(l)’Av S) = HP(di‘d(iil)a A, S)
i=1

Different strategy B — different actions b — different data d’



Unknown strategy

Strategy A — actions a, data d; strategy B — actions b, data d’
predetermined strategy B(d(i)) = g; — actions a, data d

likelihood: P(d|A, s) = [[P(dilA@™"), s) =[] P(dilai, s)
i=1

=1
— [ P@B@"), s) = P(dB, 5)
i=1

posterior: P(s|ld, A) = P(d|A, 5)P(s|A) _ P(d|A, 5)P(s)

P(d|A) P(d]A)
__PWA, s)P(s) _ P(d|B, 5)P(s)
> P(d|A, s)P(s) 2 P(d|B, s)P(s)
= P(s|d, B)

Used assumption: P(s|A) = P(s)



Historical Inference

Why data was taken does not matter for Bayesian inference, only how and what it was.
P(s|d,A) = P(s|d,B), if strategies A, B provide identical actions for observed data,
A(dD) = B(d") = a;, and if signal is independent of strategy, P(s|A) = P(s).

Corollary: A history, a recorded sequence of interdependent observations (= actions and
resulting data), is open to a Bayesian analysis without knowledge of the used strategy, but
nearly useless for frequentists analysis as alternative realities are not available.




1.8.2 Adaptive Strategy to Maximize False Evidence

Can strategy choice create spurious evidence favouring false hypothesis / over right one J ?

| _ PUld)  P(IDP()
odds: O(d) = P(J|d) — P(dl])P(J)

expected odds: (O(d))ayay = Y _P(d|A,J)0(d) = P(d|A,J)
d d

P(d|A,T) P(I)
P(a’\A, J) P(J)

P(I) P(I) : .
= —= P(d|A,I) = —— = prior odds, indepentend of A
PU) 2 )

N———
=1

Tuning of strategy can not create expected odds mass (0(d)>(d| J) in favor of wrong
hypothesis /, only redistribute it. Odds mass for right hypothesis J can be tuned, as

1 _ /P(J|dA) P(J) (.- .
<0(d) >(d|],A) - <P(1|d,A) >(d|J,A) > P() (nlce exer01se).




Adaptive Coin Tossing

10°
2| i -1
10 Q 10
- $ 102
s =
1 -3 :
10" ¢ E % 107 H_ alice (calc.)
4 - Alice (sim.)
10 E|—Bob (sim.)
. --Eve (sim.)
0 Ll ‘ 10—5 = N
10300 10! 102 103 100 10° 10' 10* 10°
n O(d) =P(I|d) : P(J|d)

Alice: serious scientist — predetermined sequence of n = 1000 tosses

. L ()
Bob: ambitious scientist — stops when O = Pg‘ﬁz(n))) > 10 or n = 1000

Eve: evil scientists — makes 1000 tosses and picks n retrospective without reporting this



End



