Planck 2015 results. I. Overview of products and scientific results

The European Space Agency’s Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The science products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, and diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic and Galactic Clumps), and extensive simulations of signals and noise used in assessing the performance of the analysis methods and assessment of uncertainties. The likelihood code used to model cosmological models against the Planck data are described, as well as a CMB lensing constraint. Scientific results include cosmological products deriving from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity.

Key words. Cosmology: observations — Cosmic background radiation — Surveys — Space vehicles: instruments — Instrumentation: detectors

(Affiliations can be found after the references)

5 February 2015
1. Introduction

The Planck satellite\(^1\) (Tauber et al. 2010; Planck Collaboration I 2011) was launched on 14 May 2009 and observed the sky stably and continuously from 12 August 2009 to 23 October 2013. Planck’s scientific payload contained an array of 74 detectors in nine frequency bands sensitive to frequencies between 25 and 1000 GHz, which scanned the sky with angular resolution between 33′ and 5′. The detectors of the Low Frequency Instrument (LFI; Bersanelli et al. 2010; Mennella et al. 2011) were pseudo-correlation radiometers, covering bands centred at 30, 44, and 70 GHz. The detectors of the High Frequency Instrument (HFI; Lamarre et al. 2010; Planck HFI Core Team 2011a) were bolometers, covering bands centred at 100, 143, 217, 353, 545, and 857 GHz. Planck imaged the whole sky twice in one year, with a combination of sensitivity, angular resolution, and frequency coverage never before achieved. Planck, its payload, and its performance as predicted at the time of launch are described in 13 papers included in a special issue of Astronomy & Astrophysics (Volume 520).

The main objective of Planck, defined in 1995, was to measure the spatial anisotropies in the temperature of the cosmic microwave background (CMB), with an accuracy set by fundamental astrophysical limits, thereby extracting essentially all the cosmological information embedded in the temperature anisotropies of the CMB. Planck was also designed to measure to high accuracy the CMB polarization anisotropies, which encode not only a wealth of cosmological information, but also provide a unique probe of the early history of the Universe, during the time when the first stars and galaxies formed. Finally, Planck produced a wealth of information on the properties of extragalactic sources and on the dust and gas in the Milky Way. The scientific objectives of Planck are described in detail in Planck Collaboration (2005). With the results presented here and in a series of accompanying papers, Planck has already achieved many of its planned science goals.

An overview of the scientific operations of the Planck mission has been presented in Planck Collaboration I (2014). Further operational details—extending this description to the end of the mission—are presented in the 2015 Explanatory Supplement (Planck Collaboration ES 2015). This paper presents an overview of the main data products and scientific results of Planck’s third release,\(^2\) based on data acquired in the period 12 August 2009 to 23 October 2013, and hereafter referred to as the “2015 products.”

Note: considering the staged delivery of the Planck 2015 products (described in Sect. 2), this paper is not complete at this time. It is provided as a guide for the user of the products and papers released in February 2015. It will be finalized after the release of 2015 products has been completed.

2. Data products in the 2015 release

The 2015 distribution of released products, which can be freely accessed via the Planck Legacy Archive interface,\(^3\) is based on all the data acquired by Planck during routine operations, starting on 12 August 2009 and ending on 23 October 2014. The distribution will occur in three stages, as follows.

February 2015

– Cleaned and calibrated timelines of the data for each detector at 30, 44, 70, 353, 545 and 857 GHz, and for the (unpolarized) spider-web bolometers at 100, 143, and 217 GHz.

– Maps of the sky at nine frequencies (Sect. 7) in temperature, and at 30, 44, 70, and 353 GHz in polarization. Additional products serve to quantify the characteristics of the maps to a level adequate for the science results being presented, such as noise maps, masks, and instrument characteristics.

– Four high-resolution maps of the CMB sky in temperature and polarization, and accompanying characterization products (Sect. 8.1).

– Four high-pass-filtered maps of the CMB sky in polarization, and accompanying characterization products (Sect. 8.1).

– A low-resolution CMB temperature map (Sect. 8.1) used in the low-\(\ell\) likelihood code, with an associated set of foreground temperature maps produced in the process of separating the low-resolution CMB from foregrounds, with accompanying characterization products.

– Maps of thermal dust and residual cosmic infrared background (CIB), carbon monoxide (CO), synchrotron, free-free, and spinning dust temperature emission, plus maps of dust temperature and opacity (Sect. 9).

– Maps of synchrotron and dust polarized emission.

– A map of the estimated CMB lensing potential over 70% of the sky.

– A map of the Sunyaev-Zeldovich effect Compton parameter.

– Monte Carlo chains used in determining cosmological parameters from the Planck data.

– The Second Planck Catalogue of Sunyaev-Zeldovich Sources (PSZ2, Sect. 9.2), comprising a list of sources detected by their SZ distortion of the CMB spectrum. The PSZ2 supersedes the previous Early Sunyaev-Zeldovich Catalogue (Planck Collaboration XXIX 2014) and the PSZ1 (Planck Collaboration XXIX 2014).

– The Planck catalogue of Galactic Cold Clumps (PGCC, Planck Collaboration XXVIII 2015), providing a list of Galactic cold sources over the whole sky (see Sect. 9.3). The PGCC supersedes the previous Early Cold Core Catalogue (ECC), part of the Early Release Compact Source Catalogue (ERCSC, Planck Collaboration VII 2011).\(^4\)

\(^1\)Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states and led by Principal Investigators from France and Italy, telescope reflectors provided through a collaboration between ESA and a scientific consortium led and funded by Denmark, and additional contributions from NASA (USA).

\(^2\)In January of 2011, ESA and the Planck Collaboration released to the public a first set of scientific data, the Early Release Compact Source Catalogue (ERCSC), a list of unresolved and compact sources extracted from the first complete all-sky survey carried out by Planck (Planck Collaboration VII 2011). At the same time, initial scientific results related to astrophysical foregrounds were published in a special issue of Astronomy and Astrophysics (Vol. 520, 2011). Since then, 34 “Intermediate” papers have been submitted for publication to A&A, containing further astrophysical investigations by the Collaboration. In March of 2013, the second release of scientific data took place, consisting mainly of temperature maps of the whole sky; these products and associated scientific results are described in a special issue of A&A (Vol. 571, 2014).

\(^3\)http://archives.esac.esa.int/pla2

\(^4\)Note: considering the staged delivery of the Planck 2015 products (described in Sect. 2), this paper is not complete at this time. It is provided as a guide for the user of the products and papers released in February 2015. It will be finalized after the release of 2015 products has been completed.
March 2015

- A likelihood code and data package used for testing cosmological models against the Planck data, including both the CMB (Sect. 8.4.1) and CMB lensing (Sect. 8.4.2).
- The Second Planck Catalogue of Compact Sources (PCCS2, Sect. 9.1), comprising lists of compact sources over the entire sky at the nine Planck frequencies. The PCCS2 includes polarization information, and supersedes the previous Early Release Compact Source Catalogue (Planck Collaboration XIV 2011) and the PCCS1 (Planck Collaboration XXVIII 2014).
- A full set of simulations, including Monte Carlo realizations.

Late spring/early summer 2015

- Cleaned and calibrated timelines of the data for all polarization-sensitive bolometers at 100, 143, and 217 GHz.
- Maps of the sky at 100, 143, and 217 GHz in polarization. Additional products serve to quantify the characteristics of the maps to a level adequate for the science results being presented, such as noise maps, masks, and instrument characteristics.

The release of 2015 products will be completed in the early summer of 2015. In parallel, the Planck Collaboration is developing the next generation of data products, which will be delivered in the early part of 2016.

3. Papers accompanying the 2015 release

The characteristics, processing, and analysis of the Planck data, as well as a number of scientific results, are described in a series of papers released with the data. The titles of the papers begin with “Planck 2015 results:”, followed by the specific titles below. Titles in black will be released in early February 2015. Titles in grey are expected to be released by the end of March 2015. Several more papers based on the 2015 data will be released later in 2015.

I. Overview of products and results (this paper)
II. Low Frequency Instrument data processing
 III. LFI systematic uncertainties
 IV. LFI beams and window functions
 V. LFI calibration
 VI. LFI maps
VII. High Frequency Instrument data processing: Time-ordered information and beam processing
VIII. High Frequency Instrument data processing: Calibration and maps
IX. Diffuse component separation: CMB maps
X. Diffuse component separation: Foreground maps
XI. CMB power spectra, likelihood, and consistency of cosmological parameters
XII. Simulations
XIII. Cosmological parameters
XIV. Dark energy and modified gravity
XV. Gravitational lensing
XVI. Isotropy and statistics of the CMB
XVII. Primordial non-Gaussianity
XVIII. Background geometry and topology of the Universe
XIX. Constraints on primordial magnetic fields
XX. Constraints on inflation
XXI. The integrated Sachs-Wolfe effect
XXII. A map of the thermal Sunyaev-Zeldovich effect
XXIII. The thermal Sunyaev-Zeldovich effect–cosmic infrared background correlation
XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
XXV. Diffuse, low-frequency Galactic foregrounds
XXVI. The Second Planck Catalogue of Compact Sources
XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
XXVIII. The Planck Catalogue of Galactic Cold Clumps

This paper contains an overview of the main aspects of the Planck project that have contributed to the 2015 release, and points to the papers that contain full descriptions. It proceeds as follows. Section 4 describes the simulations that have been generated to support the analysis of Planck data. Section 5 describes the basic processing steps leading to the generation of the Planck timelines. Section 6 describes the timelines themselves. Section 7 describes the generation of the nine Planck frequency maps and their characteristics. Section 8 describes the Planck 2015 products related to the cosmic microwave background, namely the CMB maps, the lensing products, and the likelihood code. Section 9 describes the Planck 2015 astrophysical products, including catalogues of compact sources and maps of diffuse foreground emission. Section 10 describes the main cosmological science results based on the 2015 CMB products. Section 11 describes some of the astrophysical results based on the 2015 data. Section 12 concludes with a summary and a look towards the next generation of Planck products.

4. Simulations

We simulate time-ordered information (TOI) for the full focal plane (FFP) for the nominal mission. The first five FFP realizations were less comprehensive and were primarily used for validation and verification of the Planck analysis codes and for cross-validation of the data processing centres’ (DPCs) and FFP simulation pipelines. The first Planck cosmology results (Planck Collaboration I 2014) were supported primarily by the sixth FFP simulation set, hereafter FFP6. The current results were supported by the next two generations of simulations, FFP7 and FFP8, which are described in detail in Planck Collaboration XII (2015).

Each FFP simulation comprises a single “fiducial” realization (CMB, astrophysical foregrounds, and noise), together with separate Monte Carlo (MC) realizations of the CMB and noise. To mimic the sky data as closely as possible, the simulations used the actual pointing, data flags, detector bandpasses, beams, and noise properties of the nominal mission. For the fiducial realization, maps were made of the total observation (CMB, foregrounds, and noise) at each frequency for the nominal mission period, using the Planck Sky Model (Delabrouille et al. 2013). In addition, maps were made of each component separately, of subsets of detectors at each frequency, and of half-ring and single Survey subsets of the data. The noise and CMB Monte Carlo realization-sets also included both all and subsets of detectors (so-called “DetSets”) at each frequency, and full and half-ring data sets for each detector combination.
5. Data Processing

5.1. Timeline processing

5.1.1. LFI

The main changes in the LFI data processing compared to the earlier release (Planck Collaboration II 2014) are related to the way in which we take into account the beam information in the pipeline processing, as well as an entire overhaul of the iterative algorithm used to calibrate the raw data. The process starts at Level 1, which retrieves all the necessary information from data packets and auxiliary data received from the Mission Operation Centre, and transforms the scientific packets and housekeeping data into a form manageable by Level 2. Level 2 uses scientific and housekeeping information to:

- build the LFI reduced instrument model (RIMO), which contains the main characteristics of the instrument;
- remove analogue-to-digital converter (ADC) non-linearities and 1 Hz spikes diode by diode;
- compute and apply the gain modulation factor to minimize 1/f noise;
- combine signals from the diodes with associated weights;
- compute the appropriate detector pointing for each sample, based on auxiliary data and beam information, corrected by a model (PTCOR) built using solar distance and radiometer electronics box assembly (REBA) temperature information;
- calibrate the scientific timelines to physical units (K$_{\text{CMB}}$), fitting the total CMB dipole convolved with the 4π beam representation, without taking into account the signature due to Galactic straylight;
- remove the solar and orbital dipole (convolved with the 4π beam) representation and the Galactic emission (convolved with the beam sidelobes) from the scientifically calibrated timeline;
- combine the calibrated time-ordered information (TOI) into aggregate products, such as maps at each frequency.

Level 3 collects Level 2 outputs from both HFI (Planck Collaboration VIII 2015) and LFI and derives various products, such as component-separated maps of astrophysical foregrounds, catalogues of different classes of sources, and the likelihood of cosmological and astrophysical models given in the maps.

5.1.2. HFI

The HFI data processing for this release is very similar to that used for the 2013 release (Planck Collaboration VI 2014). The main improvement is carried out in the very first step in to the pipeline, namely the correction for ADC non-linearities.

The HFI bolometer electronic readout, described in the Planck Explanatory Supplement, ends with a 16-bit Analogue-to-Digital Converter. Its tolerance on the differential non-linearity (the maximum deviation from one least significant bit, LSB, between two consecutive levels, on the whole range) is specified to be better than ±1.6 LSB. The consequences of this feature on HFI performances had not been anticipated, nor did it produce any detected effect on ground-test data, but it proved to be a major systematic effect impacting the flight data. A method that reduces the ADC effect by more than an order of magnitude for most channels has been implemented.

No changes were made to any software module involved in the TOI processing, from ADC-corrected TOI to clean TOI that are ready for qualification, calibration and mapmaking. However, several input parameters of the modules have been fine-tuned for better control of some residual systematic errors that were noticed in the 2013 data.

Improvements can be assessed by comparing the noise stationarity in the 2013 and 2015 data. Trends of the so-called total noise versus ring number before (black dots, 2013 release) and after the ADC correction (blue dots, this release) are shown in Fig. 1. There is a significant decrease in the relative width of the distribution when the ADC correction is included. For most bolometers, the noise stationarity is ascertained to be within the percent level (Planck Collaboration VIII 2015).

For strong signals, the threshold for cosmic ray removal (“deglitching”) is auto-adjusted to cope with source noise, due to the small pointing drift during a ring. Thus, more glitches are left in data in the vicinity of bright sources, such as the Galactic centre, than are left elsewhere. To mitigate this effect near bright planets, the signal at the planet location is flagged and interpolated prior to the TOI processing. For the 2015 release, this is done for Jupiter at all HFI frequency bands, for Saturn at ν ≥ 217 GHz and for Mars at ν ≥ 353 GHz.

Nevertheless, for beam and calibration studies (see Sect. 5.2.2, Planck Collaboration VII 2015 and Planck Collaboration VIII 2015), the TOI of all planet crossings, including the planet signals, are needed at all frequencies. Hence, a dedicated production is done in parallel for those pointing periods and bolometers. In that case, in order to preserve the quality of the deglitching, an iterative 3-level deglitcher has been added in the 2015 data analysis.

As noted in Planck Collaboration I (2014), Planck scans a given ring on the sky for roughly 45 minutes before moving on to the next ring. The data between these rings, taken while the spacecraft spin-axis is moving, are discarded as “unstable.” The data taken during the intervening “stable” periods are subjected to a number of statistical tests to decide whether they should be flagged as usable or not (Planck Collaboration VI 2014); this procedure continues to be used for the present data release. An additional selection process has been introduced to mitigate the effect of the 4-K lines (i.e., periodic cooler variations) on the data, especially the 30 Hz line signal, which is correlated across bolometers. It is therefore likely that the 4-K line-removal procedure leaves correlated residuals on the 30 Hz line. The consequence of this correlation is that the angular cross-power spectra between different detectors can show excess power at multipoles around ℓ ≈ 1800. To mitigate this effect, we discard all 30 Hz resonant rings for the 16 bolometers between 100 and 353 GHz for which the median average of the 30 Hz line amplitude is above 10 aW. As a result, the ℓ ≈ 1800 feature has now disappeared.

Figure 2 summarizes the situation, showing the fraction of discarded samples for each detector over the full mission. It gathers the flags at the sample level (blue line), which are mainly due to glitches (green line) plus the pointing maneuvers between rings (about 8%) and the glitch flag combination for the polarization-sensitive bolometers (PSBs) and secondly, at the ring level (black line), which are mostly due to the 4-K lines, but also due to Solar flares, big manoeuvres, and end-of-life calibration sequences, which are common to all detectors. With respect to the nominal mission, presented in the 2013 papers, the main difference appears in Survey 5, which is somewhat disjointed, due to Solar flares arising from the increased Solar activity, and to special calibration sequences. The full cold Planck HFI mission lasted 885 days, excluding the Calibration and Performance Verification (CPV) period of 1.5 months. Globally, for this du-
Fig. 1. Noise stationarity for a selection of two bolometers. The left panels show the total noise trends for each bolometer (dots). The solid line shows a running box average. The black dots are from the 2013 data release and the blue dots concern this release. The right panels show a histogram of the trends on the left. The box gives the width of the distribution at half maximum, as measured on the histogram, normalized to the mean noise level. The time response deconvolution has changed between the two data release and hence the absolute noise level is different.

5.2. Beams

5.2.1. LFI beams

As described in Planck Collaboration IV (2015), the in-flight assessment of the LFI main beams relied on the measurements performed during seven Jupiter crossings: the first four transits occurred in nominal scan mode (spin shift $2'\,1\text{ day}^{-1}$); and the last three scans in deep mode (spin shift $0.5'\,15\text{ day}^{-1}$). By stacking data from the seven scans, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. Fitting the main beam shapes with an elliptical Gaussian profile, we have expressed the uncertainties of the measured scanning beams in terms of statistical errors for the Gaussian parameters: ellipticity; orientation; and FWHM. In this release, the error on the reconstructed beam parameters is lower with respect to that in the 2013 release. Consequently, the error envelope on the window functions is lower as well. For example, the beam FWHM is determined with a typical uncertainty of 0.2% at 30 and 44 GHz, and 0.1% at 70 GHz, i.e., a factor of 2 better than the value achieved in 2013.

The scanning beams used in the LFI pipeline (affecting calibration, effective beams, and beam window functions) are based on GRASP simulations, properly smeared to take into account the satellite motion, and are similar to those presented in Planck Collaboration IV (2014). They come from a tuned optical model, and represent the most realistic fit to the available measurements of the LFI main beams. In Planck Collaboration IV (2014), calibration was performed assuming a pencil beam, the main beams were full-power main beams, and the resulting beam window functions were normalized to unity. For the 2015 release, a different beam normalization has been used to properly take into account the power entering the main beam (typically about 99\% of the total power). Indeed, as described in Planck Collaboration V (2015), the current LFI calibration takes into account the full 4π beam (i.e., the main beam, as well as near and far sidelobes). Consequently, in the calculation of the window function, the beams are not normalized to unity; instead, their normalization uses the value of the efficiency calculated
taking into account the variation across the band of the optical response (coupling between feed horn pattern and telescope) and the radiometric response (band shape).

Although the GRASP beams are computed as the far-field angular transmission function of a highly polarized radiating element in the focal plane, the far-field pattern is in general not perfectly linearly polarized, because there is a spurious component induced by the optical system, named “beam cross-polarization.” The Jupiter scans allowed us to measure only the total field, that is, the co- and cross-polar components combined in quadrature. The adopted beam model has the added value of defining the co- and cross-polar pattern separately, and it permits us to properly consider the beam cross-polarization in every step of the LFI pipeline. The GRASP model, together with the pointing information derived from the focal plane geometry reconstruction, gives the most advanced and precise noise-free representation of the LFI beams. The polarized main beams were used to calculate the effective beams, which take into account the specific scanning strategy in order to include any smearing and orientation effects on the beams themselves. Moreover, the sidelobes were used in the calibration pipeline to correctly evaluate the gains and to subtract Galactic straylight from the calibrated timelines (Planck Collaboration II 2015).

To evaluate the beam window functions, we adopted two independent approaches, both based on Monte Carlo simulations. In one case, we convolved a fiducial CMB signal with realistic scanning beams in harmonic space to generate the corresponding timelines and maps. In the other case, we convolved the fiducial CMB map with effective beams in pixel space with the FEBeCoP (Mitra et al. 2011) method. Using the first approach, we have also evaluated the contribution of the near and far sidelobes on the window functions. The impact of sidelobes on low multipoles is about 0.1 % (for details see Planck Collaboration IV 2015).

The error budget was evaluated as in the 2013 release and it comes from two contributions: the propagation of the main beam uncertainties throughout the analysis; and the contribution of near and far sidelobes in the Monte Carlo simulation chain. The two error sources have different relevance, depending on the angular scale. Ignoring the near and far sidelobes is the dominant error at low multipoles, while the main beam uncertainties dominate the total error budget at \(\ell \geq 600 \). The total uncertainties in the effective beam window functions are 0.4 % and 1 % at 30 and 44 GHz, respectively (at \(\ell \approx 600 \)), and 0.3 % at 70 GHz at \(\ell \approx 1000 \).

5.2.2. HFI beams

The HFI main beam measurement is described in detail in Planck Collaboration VII (2015) and is similar to that of Planck Collaboration VII (2014), although with several important changes. The HFI scanning beam model is a “B spline” decomposition of the time-ordered data from planetary observations. The domain of reconstruction of the main beam is extended from a 40' square to a 100' square and is no longer apodized in order to preserve near sidelobe structure in the main beam model Planck Collaboration XXXI (2014), as well as to incorporate residual time-response effects into the beam model. A combination of Saturn and Jupiter data (rather than Mars data) is used for an improved signal-to-noise ratio, and a simple model of diffraction (consistent with physical optics predictions) is used to extend the beam model below the noise floor from planetary data. A second stage of cosmic ray glitch removal is added to reduce bias from unflagged cosmic ray hits.

The effective beams and effective beam window functions are computed using the FEBeCoP and Quickbeam codes, as in Planck Collaboration VII (2014). While the scanning beam measurement produces a total intensity map only, effective beam window functions appropriate for both temperature and polarized angular power spectra are produced by averaging the individual detector window functions weighted by temperature sensitivity and polarization sensitivity. Temperature-to-polarization leakage due to main beam mismatch is subdominant to noise in the polarization measurement, and is corrected as an additional nuisance parameter in the likelihood.

The uncertainty in the beam measurement is derived from an ensemble of 100 Monte Carlo simulations of the planet observations that include random realizations of detector noise, cosmic ray hits, and pointing uncertainty propagated through the same pipeline as the data to simulated scanning beam products and simulated effective beam window functions. The error is expressed in multipole space as a set of error eigenmodes, which capture the correlation structure of the errors. Additional consistency checks are performed to validate the error model, splitting the planet data to construct Year 1 and Year 2 beams and to create Mars-based beams. With improved control of systematics and higher signal-to-noise ratio, the uncertainties in the HFI
beam window function have decreased by more than a factor of 10 relative to the 2013 release.

Several differences between the beams in 2013 and 2015 may be listed.

- **Finer polar grid.** Instead of the cartesian grid 40′ on each side used previously, the beam maps were produced on both a cartesian grid of 200′ on each side and 2″ resolution, and a polar grid with a radius of 100′ and a resolution of 2″ in radius and 30′ in azimuth. The latter grid has the advantage of not requiring any extra interpolation to compute the beam spherical harmonic coefficients b_{lm} required by quickbeam, and therefore improves the accuracy of the resulting $B(\ell)$.

- **Scanning beam elongation.** To account for the elongation of the scanning beam induced by the time response deconvolution residuals, the quickbeam computations are conducted with the b_{lm} for $-6 \leq m \leq 6$. We checked that the missing terms account for less than 10^{-4} of the effective $B^e(\ell)$ at $\ell = 2000$. Moreover, spotcheck comparisons with the effective $B(\ell)$ obtained by FEBECoP show very good agreement.

- **Finite size of Saturn.** Even though its rings seem invisible at Planck frequencies (and unlike Mars), Saturn has an angular size that must be accounted for in the beam window function. The planet was assumed to be a top-hat disc of radius 9.5′′ at all HFI frequencies, whose window function is well approximated by that of a 2D Gaussian profile of FWHM 11′′/185; the effective $B(\ell)$ were therefore divided by that window function.

- **Cut sky and pixel shape variability.** The effective beam window functions do not include the (nominal) pixel window function, which must be accounted for separately when analysing Planck maps. However, the shape and individual window function of the HEALpix Górski et al. (2005) pixels have large-scale variations around their nominal values across the sky. These variations impact the effective beam window functions applicable to Planck maps, in which the Galactic plane has been masked more or less conservatively, and are included in the effective $B(\ell)$ that are provided.

- **Polarization and detector weights.** Each 143, 217 and 353 GHz frequency map is a combination of measurement by Planck Collaboration XI 2015 ofTT (Q and U) maps, and include the tilt correction into our ad hoc pointing correction, PTCOR.

5.3. Focal plane geometry and pointing

The focal plane geometry of LFI was determined independently for each Jupiter crossing (Planck Collaboration IV 2015), using the same procedure adopted in the 2013 release. The solutions for the seven crossings agree within 4′′ at 70 GHz (and 7′′ at 30 and 44 GHz). The uncertainty in the determination of the main beam pointing directions evaluated from the single scans is about 4″ for the nominal scans, and 2′′5 for the deep scans at 70 GHz (27′′ for the nominal scan and 19′′ for the deep scan, at 30 and 44 GHz). Stacking the seven Jupiter transits, the uncertainty in the reconstructed main beam pointing directions becomes 0′′6 at 70 GHz and 2′′ at 30 and 44 GHz. With respect to the 2013 release, we have found a difference in the main beam pointing directions of about 5′′ in the cross-scan direction and 0′′6 in the in-scan direction.

Throughout the extended mission, Planck continued to operate star camera STR1, with the redundant unit, STR2, only briefly swapped on for testing. No changes were made to the basic attitude reconstruction. We explored the possibility of updating the satellite dynamic model and using the fibre-optic gyro for additional high frequency attitude information. Neither provided significant improvements to the pointing and were actually detrimental to overall pointing performance.

Attitude reconstruction delivers two quantities: the satellite body reference system attitude; and the angles between it and the principal axis reference system (so-called “tilt” or “wobble” angles). The tilt angles are needed to reconstruct the focal plane line-of-sight from the raw body reference frame attitude. For unknown reasons, the reconstructed tilt angles became irregular at the start of the LFI-only extension (cf. Fig. 3). Starting near day 1000 after launch, the tilt angles began to indicate a drift that covered 1′5 over about a month of operations. We found that the drift was not present in observed planet positions and we were therefore forced to abandon the reconstructed tilt angles and include the tilt correction into our ad hoc pointing correction, PTCOR.

We noticed that the most significant tilt angle corrections prior to the LFI extension tracked well the distance, d_{sun}, between the Sun and Planck (see Fig. 3, bottom panel), so we decided to replace the spline fitting from 2013 with the use of the Solar distance as a fitting template. The fit was improved by adding a linear drift component and inserting breaks at events known to disturb the spacecraft thermal environment. In Fig. 4 we show the co- and cross-scan pointing corrections and a selection of planet position offsets after the correction was applied. The template-based pointing correction differs only marginally from the 2013 PTCOR, but an update was absolutely necessary to provide consistent, high fidelity pointing for the entire Planck mission.

Finally we addressed the LFI radiometer electronics box assembly (REBA) interference that was observed in the 2013 release by constructing, fitting, and subtracting another template from the REBA thermometry. This greatly reduced short timescale pointing errors prior to REBA thermal tuning on day 540 after launch. The REBA template removal reduced the pointing period timescale errors from 2′7 to 0′8 (in-scan) and 1′9 (cross-scan).
5.4. Calibration

In this section we compare the relative photometric calibration of the all-sky CMB maps between LFI and HFI, as well as between Planck and WMAP. The two Planck instruments use different technologies and are subject to different foregrounds and systematic effects. The Planck and WMAP measurements overlap in frequency range, but have independent spacecraft, telescopes, and scanning strategies. Consistency tests between these three data sets are very demanding tests of the control of calibration, transfer functions, systematic effects, and foreground contamination.

5.4.1. The orbital dipole

In the 2013 data release, photometric calibration from 30 to 353 GHz was based on the “Solar dipole”, that is, the dipole induced in the CMB by the motion of the Solar System barycentre with respect to the CMB. We used the value of the dipole measured by WMAP5 (Hinshaw et al. 2009; Jarosik et al. 2011).

In the 2015 data release, photometric calibration of both LFI and HFI is based on the “orbital dipole,” i.e., the modulation of the Solar dipole induced by the orbital motion of the satellite around the Solar System barycentre. By using this primary calibrator, we can derive for each Planck detector (or combination of detectors) an independent measurement of the Solar dipole,
which is then used in the Planck calibration pipeline. The orbital motion is known with exquisite accuracy of about one part in 10^6, making the orbital dipole potentially the most accurate calibration source in all of astrophysics, limited ultimately by the accuracy of the temperature of the CMB. The amplitude of this modulation, however, is only about $250 \mu K$, varying with the details of the satellite motion, an order of magnitude smaller than the Solar dipole. Realizing its advantages as a fundamental calibration source requires low noise and good control of foregrounds, sidelobes, and large-angular-scale systematics. For the 2015 release, improvements in the control of systematic effects and foregrounds on both LFI and HFI, including the availability of 2.5 and 4 orbital cycles for HFI and LFI, respectively (compared to 1.25 cycles in the 2013 release), have allowed accurate calibration of both instruments on the orbital dipole, summarized in the following subsections and described in detail in Planck Collaboration II (2015) and Planck Collaboration VIII (2015).

With the 2015 data calibrated on the orbital dipole, Planck has independent measurements of the Solar dipole (Table 1), which can be compared to the WMAP5 measurement (Hinshaw et al. 2009). Amplitudes agree within 0.28%; directions agree to better than $2\sqrt{\circ}$. Although the difference in amplitude between the Planck and the WMAP5 measurements of the Solar dipole is small and within uncertainties, it had an important consequence in 2013. WMAP was calibrated on the orbital dipole, so errors in its Solar dipole measurement did not contribute to its overall calibration errors. Planck in 2013, however, was calibrated on the WMAP5 Solar dipole, which is 0.28% lower than the orbital-dipole-calibrated 2015 Planck measurement. Calibrating LFI and HFI against WMAP5 in the 2013 results, therefore, resulted in 2013 gains that were 0.28% too low for both LFI and HFI. This factor is given in Tables 2 and 3.

5.4.2. Instrument level calibration

LFI—There were four significant changes related to LFI calibration between the 2013 and the 2015 results. First (as anticipated in the 2013 LFI calibration paper, Planck Collaboration V 2015), the convolution of the beam with the overall dipole (Solar and orbital, plus relativistic quadrupole) is performed with the full 4σ beam rather than a pencil beam. This dipole model is used to extract the gain calibration parameter. As a consequence, the reference signal used for the calibration is different for each of the 22 LFI radiometers. This change improves the results of null tests and the quality of the polarization maps, and leads to shifts of $+0.17$, $+0.035$, and $+0.15 \%$ in gain calibration at 30, 44, and 70 GHz, respectively. Second, a new destriping code, Da Capo (Planck Collaboration V 2015), is used; this superseded the Mademoiselle code used in the 2013 data release and offers improved handling of 1/f noise. Third, Galactic contamination entering via sidelobes is subtracted from the timelines after calibration. Finally, a new smoothing algorithm is applied to the calibration parameters. It adapts the length of the smoothing window depending on a number of parameters, including the peak-to-peak amplitude of the dipole seen within each ring and sudden temperature changes in the instrument. These changes improve the results of null tests, and also lead to an overall change in gain calibration of about $+0.4 \%$.

In total, these improvements give an overall increase in gain calibration for LFI of $+0.55$, $+0.44$, and $+0.67 \%$ at 30, 44, and 70 GHz, respectively. Adding the 0.28% error introduced by the WMAP Solar dipole in 2013 (discussed in Sect. 5.4.1), we find an overall shift of about 0.8% in gain calibration with respect to our LFI 2013 analysis, as detailed in Table 2. As shown in Planck Collaboration V (2015), relative calibration between LFI radiometers is consistent within their statistical uncertainties. At 70 GHz, the deviations of the calibration of single channels are typically within 0.15% of the overall calibration level.

HFI—There were three significant changes related to HFI calibration between the 2013 and the 2015 results: improved determination and handling of near and far sidelobes; improved ADC non-linearity correction; and improved handling of very long time constants. The biggest improvements come from the introduction of near sidelobes of the main beam ($0.5–5\circ$) that were not detected in observations of Mars, and from the introduction of very long time constants. We consider these in turn.

Observations of Jupiter were not used in 2013 results, because its signal is so strong that it saturates some stages of the readout electronics. The overall transfer function for each detector is corrected through the deconvolution of a time transfer function, leaving a compact effective beam used together with the maps in the science analysis. In the subsequent “consistency paper” Planck Collaboration XXXI (2014), it was found that lower-noise hybrid beams built by using Mars, Saturn, and Jupiter observations reveal near sidelobes leading to significant corrections of 0.1 to 0.3%. Far sidelobes give a very small calibration correction that is almost constant for $\ell > 3$. The zodiacal contribution was removed in the timelines, as it does not project properly on the sky. It gives an even smaller and negligible correction, except in the submillimetre (hereafter “submm”) channels.

The greatest improvement came from the recognition of the existence of very long time constants (VLTC) and their inclusion in the analysis. VLTCs introduce a significant shift in the apparent position of the dominant anisotropy in the CMB, the Solar dipole, away from its true position. This in effect creates a leakage of the Solar dipole into the orbital dipole. This is why calibration on the orbital dipole did not work as expected from simulations, and why calibration in 2013 was instead based on the WMAP5 Solar dipole. As discussed in Sect. 5.4.1, the WMAP5 Solar dipole was underestimated by 0.28% when compared with the Planck best-measured amplitude, leading to an under-calibration of 0.28% in the Planck 2013 maps. With VLTCs included in the analysis, calibration on the orbital dipole worked as expected, and gave more accurate results, while at the same time eliminating the need for the WMAP5 Solar dipole and removing the 0.28% error that it introduced in 2013.

Together, these give an average shift of gain calibration of $+0.5 \%$ (Planck Collaboration VIII 2015). The HFI calibration changes are summarized in Table 3.

The relative calibration between detectors at the same frequency is within 0.05% for 100 and 143 GHz, 0.1% at 217 GHz, and 0.4% at 353 GHz Planck Collaboration VIII (2015). These levels for the CMB channels are within a factor of 3 of the accuracy floor set by noise in low ℓ polarization (Tristram et al. 2011).

The 545 and 857 GHz channels are calibrated using models of planetary atmospheric emission. As in 2013, we used both Neptune and Uranus. The main difference comes from better handling of the systematic errors affecting the planet flux density measurements. Analysis is now performed on the timelines, using aperture photometry, and taking into account the inhomogeneous spatial distribution of the samples. On frequency maps, we estimate statistical errors on absolute calibration of 1.1% and 1.4% at 545 and 857 GHz, respectively, to which we add the 5% systematic uncertainty arising from the planet models.
See Sect. 5.4.1 for the e
Hinshaw et al. (2009).

Uncertainties include an estimate of systematic errors.

decreased by 1.8 and 3.3 % compared to 2013.

corrections), the released 2015 frequency maps have brightness
factors changed by 1.9 and 4.1 %, at 545 and 857 GHz, respec-

Planck Collaboration X 2015). Compared to 2013, calibration
component separation gives consistent numbers (see table 6 of

Table 2. LFI calibration changes, 2013 → 2015.

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Beam solid angle [%]</th>
<th>Pipeline improvements [%]</th>
<th>Orbital Dipole [%]</th>
<th>Total [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.17</td>
<td>0.4</td>
<td>0.28</td>
<td>0.85</td>
</tr>
<tr>
<td>44</td>
<td>0.035</td>
<td>0.4</td>
<td>0.28</td>
<td>0.72</td>
</tr>
<tr>
<td>70</td>
<td>0.15</td>
<td>0.4</td>
<td>0.28</td>
<td>0.83</td>
</tr>
</tbody>
</table>

The “nominal” Planck dipole was chosen as a plausible combination of the LFI and HFI measurements early in the analysis, to carry out subtraction of the dipole from the frequency maps (see Sect. 5.4.3). The current best determination of the dipole comes from an average of 100 and 143 GHz results, with an amplitude of 3364.5 µK, the same as the nominal amplitude, but with a direction 2/8 different from the nominal one.

Errors on absolute calibration are therefore 6.1 and 6.4 % at 545 and 857 GHz, respectively. Since the reported relative uncer-
tainty of the models is of the order of 2 %, we find the relative calibration between the two HFI high-end frequencies to be better than 3 %. Relative calibration based on diffuse foreground component separation gives consistent numbers (see table 6 of Planck Collaboration X 2015). Compared to 2013, calibration factors changed by 1.9 and 4.1 %, at 545 and 857 GHz, respectively. Combined with other pipeline changes (such as the ADC corrections), the released 2015 frequency maps have brightness decreased by 1.8 and 3.3 % compared to 2013.

5.4.3. Relative calibration and consistency

The relative calibration of LFI, HFI, and WMAP can be assessed on several angular scales. At ℓ = 1, we can compare the amplitude and direction of the Solar dipole, as measured in the frequency maps of the three instruments. On smaller scales, we can compare the amplitude of the CMB fluctuations measured frequency by frequency by the three instruments, during and after component separation.

Comparison of independent measurements of the Solar dipole—Table 1 gives the LFI and HFI measurements of the Solar dipole, showing agreement well within the uncertainties. The amplitudes agree within 1.5 µK (0.05 %), and the directions agree within 3'. Table 1 also gives the “nominal” Planck dipole that has been subtracted from the Planck frequency maps in the 2015 release. This is a plausible combination of the LFI and HFI values, which satisfied the need for a dipole that could be subtracted uniformly across all Planck frequencies early in the data processing, before the final systematic uncertainties in the dipole measurements were available and a rigorous combination could be determined. See Planck Collaboration VIII (2015) Sect. 5.1 for additional measurements.

Nearly independent determinations of the Solar dipole can be extracted from individual frequency maps using component-separation methods relying on templates from low and high frequencies where foregrounds dominate (Planck Collaboration V 2015; Planck Collaboration VIII 2015). The amplitude and di-
rection of these Solar dipole measurements can be compared with each other and with the statistical errors. This leads to relative gain calibration factors for the ℓ = 1 mode of the maps expressed in K_CMB, as shown for frequencies from 70 to 545 GHz in Table 4. For components of the signal with spectral distribution different from the CMB, a colour correction is needed to take into account the broad bands of these experiments.

Comparison of the residuals of the Solar dipole left in the CMB maps after removal of the best common estimate—Another measurement of relative calibration is given by the residuals of the Solar dipole left in CMB maps after remov-
ing the best common estimate, the nominal Planck dipole. The residual dipole comes from two terms as illustrated in Fig. 5, one associated with the error in direction, with an axis nearly orthogonal to the Solar dipole, and one associated with the error in amplitude aligned with the Solar dipole. Using the 857 GHz
map as a dust template (extrapolated with optimized coefficients derived per patch of sky), we find residual dipoles dominated by errors in the direction of the Solar dipole at 100 and 143 GHz, and residuals associated with calibration errors for the other frequencies. The relative residual amplitudes are given in Table 4. This shows that a minimization of the dipole residuals can and will be introduced in the HFI calibration pipeline for the final 2016 release.

Fig. 5. Angle difference $\alpha_{\text{rem}-\text{sol}}$ between the removed Solar dipole and the residual dipole for given errors on the dipole direction (i.e., the angle difference between the removed dipole and the true Solar dipole, $\alpha_{\text{rem}-\text{sol}}$) and on the calibration ($\delta G = 1 - A_{\text{rem}}/A_{\text{sol}}$, expressed in percent).

Comparison of CMB anisotropies frequency by frequency during and after component separation—Table 4 also shows the relative calibration between frequencies and detectors determined by SMICA (Planck Collaboration XV 2014; Planck Collaboration IX 2015) and Commander (Planck Collaboration IX 2015; Planck Collaboration X 2015), two of the map-based diffuse component separation codes used by Planck. The calculation is over different multipole ranges for the two methods, so variation between the two could reflect uncertainties in transfer functions; moreover, Commander uses different constraints in order to deal with the complexities and extra degrees of freedom involved in fitting foregrounds individually (see Planck Collaboration X 2015 for details), so we do not expect identical results with the two codes. Nevertheless, the agreement is excellent, at the 0.2 % level between the first acoustic peak, intermediate ℓ, and dipole residuals, and the intercalibration offsets between frequencies are within 0.3 % of zero from 30 GHz to 217 GHz.

The following points highlight the remarkable internal consistency of Planck calibration.

- The small Solar dipole residuals measured for the 100 and 143 GHz channels ($< 4 \mu K$) are close to 90° away from the adopted Planck Solar dipole, reflecting in both cases a small 2.8° shift in the measured direction of the dipole compared to the adopted dipole, but amplitudes (hence calibrations) within 0.1 % of the adopted (“mean”) value. The Commander and SMICA inter-comparisons below and on the first acoustic peak give a calibration difference between 100 and 143 GHz of $\pm 0.09 \%$, confirming the very high calibration accuracy of these two channels.
 - The amplitude of the Solar dipole measured by the 70 GHz channel shows a difference of 1 μK (0.03 %) with respect to the best HFI Solar dipole amplitude.
 - The 217, 353, and 545 GHz channels show dipole residuals aligned with the Solar dipole, which thus measure directly calibration errors with respect to 143 GHz of 0.2, 0.53, and 1.25 %.
 - The SMICA first peak inter-calibration of 217 and 353 GHz with respect to 143 GHz, taken again as reference, shows similar inter-calibration to the dipole residuals with differences 0.08 and 0.20 %. In fact, Table 4 suggests that we can now achieve significantly better inter-calibration of all CMB channels from 70 to 353 GHz.
 - Comparison of the Solar dipole and first acoustic peak inter-calibration factors for the 545 GHz channel gives a difference of only 0.16 %.
 - The low values at $\ell < 50$ show the effect of unremoved diffuse foregrounds at 143 GHz, and the rise of the 70/143 ratio is at least partly driven by unremoved discrete foregrounds; the uncertainties are larger at 70 GHz as well. In the middle region, the agreement is very good, at a level of a few tenths of a percent. This result is a direct test that all systematic effects in calibration have been corrected on both instruments to better than this value.
 - The right-hand panel of Fig. 6 shows the ratios of Planck TT spectra at 70 and 100 GHz to those of WMAP in the V and W bands, as calculated for Planck 2013 data (Planck Collaboration XXXI 2014) and for the 2015 data. While the scatter is significantly larger than that in the left-hand panel, due to the higher noise in WMAP, the agreement is very good, and within the statistical errors. We can now say that within the uncertainties, LFI, HFI, and WMAP agree, and the difference seen in the 2013 data (Planck Collaboration XXXI 2014) is gone.

5.4.4. Summary of calibration

The Planck 70 and 100 GHz channels belong to instruments based on different technologies, with different systematic effects, and close to the minimum of the diffuse foregrounds. They thus provide a very good test of the consistency of calibration and transfer functions. The internal consistency between LFI and HFI is remarkable. Figure 6 represents a stringent test of calibration, systematic effects, beams, and transfer functions, and
Table 4. Inter-calibration factors by frequency between LFI, HFI, and WMAP.

<table>
<thead>
<tr>
<th>Frequency [GHz] (Detector)</th>
<th>Solar dipole [%]</th>
<th>CMB Anisotropy [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ℓ = 1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMICA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 ≤ ℓ ≤ 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 ≤ ℓ ≤ 500</td>
</tr>
<tr>
<td>30</td>
<td>...</td>
<td>−0.34 ± 0.1</td>
</tr>
<tr>
<td>44</td>
<td>...</td>
<td>0.34 ± 0.1</td>
</tr>
<tr>
<td>70</td>
<td>0.044</td>
<td>0.04 ± 0.1</td>
</tr>
<tr>
<td>100</td>
<td>0.03</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>143</td>
<td>Reference frequency</td>
<td>Reference frequency</td>
</tr>
<tr>
<td>217</td>
<td>0.20</td>
<td>0.02 ± 0.03</td>
</tr>
<tr>
<td>353</td>
<td>0.53</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>545</td>
<td>1.25</td>
<td>−1.00 ± 0.2</td>
</tr>
<tr>
<td>WMAP (23)</td>
<td>Reference frequency</td>
<td>Reference frequency</td>
</tr>
<tr>
<td>WMAP (33)</td>
<td>...</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>WMAP 41 (Q)</td>
<td>...</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>WMAP 61 (V)</td>
<td>...</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>WMAP 94 (W)</td>
<td>−0.26</td>
<td>0.2 ± 0.1</td>
</tr>
</tbody>
</table>

a LFI map rescaling factors that are incorporated in the beam transfer functions, as described in Planck Collaboration II (2015), have been applied.
b For Commander, the effective recalibration of the 545 GHz channel measured in units of μK_{CMB} is the product of a multiplicative calibration factor and a unit conversion correction due to revised bandpass estimation. See Sect. 5.3 in Planck Collaboration X (2015) for details.

Fig. 6. Ratios of power spectra over the region of the first acoustic peak, uncorrected for foregrounds (which vary over the three frequencies). The uncertainties are the errors on the mean within each $\Delta \ell = 40$ bin of the ratios computed ℓ by ℓ. Left: Ratios of 70 and 100 GHz TT spectra to 143 GHz. The low values at $\ell = 50$ are due to diffuse foregrounds at 143 GHz. The rise to higher multipoles in the 70/143 ratio is due to discrete foregrounds. Right: Ratio of TT spectra of Planck 70 and 100 GHz to WMAP V and W bands, as calculated for Planck 2013 data (Planck Collaboration XXXI 2014) and for the 2015 data. The near-overlap of frequencies between the Planck and WMAP bands means that foregrounds have no appreciable effect on the ratios. The effect of the calibration changes in Planck between 2013 and 2015 that are discussed in this paper is clear. There is now excellent agreement within statistical errors between Planck and WMAP in the region of the spectrum where both have high S/N.
demonstrates overall consistency at a level of a few parts per thousand between independent instruments and spacecraft.

The Planck CMB-channels from 70 to 217 GHz show calibration difference below 0.3\%, measured from both residual dipoles and first acoustic peak. Using a Solar dipole reference established on the 100 and 143 GHz channels, it is likely that all detectors could be inter-calibrated to 0.05\% in subsequent data processing versions. The agreement of the measured calibration factors from dipole residuals ($\ell = 1$) and first acoustic peak ($\ell = 200$) shows that the transfer functions are controlled to better than 0.2\% in this multipole range. Corrections for systematic effects in HFI cover a dynamic range from detector to detector larger than 2 at 100 and 143 GHz, but have reduced the calibration errors by an order of magnitude. This suggests that the corrections lead now to an absolute photometric calibration accuracy on the orbital dipole (limited only by systematics and noise) of 0.1\%.

As in other instances in the Planck data processing, when very small systematic effects are detected and measured in a posteriori characterization, their removal from the data is complicated. Their determinations are often degenerate, and complete reprocessing is necessary. The calibration improvement demonstrated by the minimization of the dipole residuals using the 857 GHz dust template will be introduced in a self-consistent way in the HFI calibration pipeline and overall processing for the final 2016 release. Furthermore, the use of the Solar dipole parameters from the best Planck CMB channels (100 and 143 GHz) will be introduced in the processing of the channels more affected by foregrounds and noise. The LFI calibration accuracy is now close to noise-limited, but improvements will be made in 2015 according to a complete simulation plan to improve our understanding of calibration and systematics affecting low multipoles, particularly for polarization analysis.

6. Timelines

For the first time, the 2015 Planck release includes time series of the observations acquired by individual detectors in LFI and HFI (see Planck Collaboration II 2015; Planck Collaboration VII 2015, for details). These timelines will be of use for those wishing to construct maps using specific time periods or mapmaking algorithms.

The delivered timelines have been cleaned of all major instrumental systematic effects. For HFI timelines this means that the raw timelines are ADC-corrected, demodulated, despiked, corrected for rare baseline jumps, and a dark template has been removed; they are converted to absorbed power units, and the time transfer function has been deconvolved. For LFI timelines this means that the raw timelines are ADC-corrected, despiked, and demodulated; furthermore, the raw diode outputs (two per receiver) are combined and gain regularization is applied before calibration.

The timelines are calibrated to astrophysical units and corrected for a zero-point level (determined at map level). The Solar and orbital dipole signals have been removed. In addition, for LFI, an estimation of Galactic straylight has been removed.

The timelines still contain the low-frequency noise that is later removed by destriping at the mapmaking stage. However, a set of offsets are provided (determined during mapmaking), which can be used to convert the calibrated timelines to maps without destriping. For HFI a single offset per ring is determined; for LFI the offsets are computed every 0.246, 0.988, and 1.000 s for the 30, 44, and 70 GHz channels, respectively. For HFI, the offsets are determined during mapmaking using the full mission data set and all valid detectors per channel, and they are then applied to all the maps produced, i.e., using any fraction of the mission (year, survey) or any subset of detectors (single detector, detector set). For LFI the offsets are similarly determined using the full mission and all valid detectors per channel. These offsets have been used to produce the full-mission LFI maps; however, for shorter period maps, different offsets are used, which optimize noise cross-correlation effects, and these are not delivered.

The timelines are accompanied by flags that determine which data have been used for mapmaking, as well as pointing timelines, which are sampled at the same frequency as the data themselves.

7. Frequency Maps

Planck uses HEALPix (Górski et al. 2005) as its basic representation scheme for maps, with resolution labelled by the N_{side} value.

7.1. Mapmaking

7.1.1. LFI

Mapmaking takes as its input the calibrated timelines, from which the cosmological and orbital dipole signals have been removed. An estimate of Galactic straylight is subtracted from the timelines prior to mapmaking, since this is difficult to correct for at map level. As for the 2013 release, the LFI maps are produced using the Madam destriping code (Keihanen et al. 2010), enhanced with a noise prior, which enables accurate removal of correlated 1/f noise, while simultaneously minimizing systematic errors by judicious use of masks. The production of maps and covariance matrices is validated using the FFP8 simulations. The output of the code consists of sky maps of temperature and Stokes Q and U polarization, and a statistical description of residual noise in the maps in the form of pixel-pixel noise covariance matrices. These matrices are produced at $N_{\text{side}} = 64$. In addition to full-mission maps at both high and low resolution ($N_{\text{side}} = 16$), many other types of maps are produced, including those from single horns, single radiometers, single surveys, odd and even surveys, single years, and halves of the mission. The LFI maps are not corrected for beam shape, so that point sources in the map have the shape of the effective beam at that location. Zero-levels are estimated by fitting a cosecant-law Galactic latitude model to the CMB-subtracted maps, and subtracting this from the maps. The polarization maps must be corrected for bandpass leakage through multiplication with leakage template maps, which are estimated via a process similar to component separation.

A summary of the characteristics of the LFI maps is presented in Table 5.

7.1.2. HFI

As for the Planck 2013 release, the measurements in each HEALPix pixel visited during a stable pointing period (i.e., “ring”) are averaged for each detector, keeping track of the bolometer orientation on the sky. The calibration and mapmaking operations use this intermediate product as an input. For each detector, the TOIs are only modified by a single offset value per ring, determined using the destriping method described in Tristram et al. (2011). The offsets are computed simultaneously for all bolometers at a given frequency, using the full mission data. For a given bolometer, the same offset per ring is applied.
The 2015 CMB products.

8.1. CMB maps

As for the Planck 2013 release, we use four different methods to separate the Planck 2015 frequency maps into physical components (Planck Collaboration IX 2015). The four methods are: SMICA (independent component analysis of power spectra, Delabrouille et al. 2003; Cardoso et al. 2008); NILC (needle-based internal linear combination, Delabrouille et al. 2009); Commander (pixel-based parameter and template fitting with Gibbs sampling, Eriksen et al. 2006; Eriksen et al. 2008); and SEVEM (template fitting, Fernández-Cobos et al. 2012). The methods used are conceptually the same as in 2013, but we apply them now independently of the temperature and polarization maps. Similarly to what was done in 2013, simulations (in this case FFP8, Planck Collaboration XII 2015) are used to test the methods and estimate uncertainties in the recovery of components.

All four methods produce CMB maps in Stokes I, Q, and U. In addition, Commander and SMICA also separate diffuse astrophysical “foregrounds” characterized by their different spectral signatures. Commander does so by fitting physical models of these foregrounds and the CMB to the sky, whereas SMICA extracts a fixed set of independent components representing CMB, foregrounds and noise; typically, SMICA assumes two “foregrounds” are present at low and high frequencies, respectively. An important change in the implementation of Commander in 2015 is the number of input maps used: firstly, the number of Planck maps is expanded to use detector-level maps rather than maps which combine all detectors at each frequency; secondly, the inputs include a map of 408 MHz emission, and the 9-year WMAP maps. The dramatic increase in the number of input maps allows Commander to: (a) control much better factors such as relative calibration and frequency response of individual channels; and (b) extract a larger number of foreground temperature components, now matching those that are expected to be present in the sky.

The 2015 Planck CMB temperature maps produced by all four methods (see an example in Fig. 7) are significantly more sensitive than those produced in 2013 (by a fac-

Table 5. Main characteristics of LFI full mission maps.

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Characteristic</th>
<th>30 GHz</th>
<th>44 GHz</th>
<th>70 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre frequency [GHz]</td>
<td>28.4</td>
<td>44.1</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>Effective beam FWHM' [arcmin]</td>
<td>32.29</td>
<td>27.00</td>
<td>13.21</td>
<td></td>
</tr>
<tr>
<td>Effective beam ellipticity</td>
<td>1.32</td>
<td>1.04</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Temperature noise (1's) [μK_{CMB}]</td>
<td>2.5</td>
<td>2.7</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Polarization noise (1's) [μK_{CMB}]</td>
<td>3.5</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Overall calibration uncertainty [%]</td>
<td>0.35</td>
<td>0.26</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Systematic effects uncertainty in Stokes I [μK_{CMB}]</td>
<td>0.19</td>
<td>0.39</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Systematic effects uncertainty in Stokes Q [μK_{CMB}]</td>
<td>0.20</td>
<td>0.23</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Systematic effects uncertainty in Stokes U [μK_{CMB}]</td>
<td>0.40</td>
<td>0.45</td>
<td>0.44</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Calculated from the main beam solid angle of the effective beam, $\Omega_{\text{eff}} = \text{mean} (\Omega)$. These values are used in the source extraction pipeline (Planck Collaboration XXVI 2015).

2. Noise rms computed after smoothing to 1'.

3. Sum of the error determined from the absolute and relative calibration, see Planck Collaboration IV (2015).

4. Estimated rms values over the full sky and after full mission integration. Not included here are gain reconstruction uncertainties, estimated to be of order 0.1 %.

Whatever the map (e.g., full-mission, half-mission, detector-set maps; but for half-ring maps, see Planck Collaboration VII 2015). Each data sample is calibrated in K for the 100, 143, 217, and 353 GHz channels, and MJy sr$^{-1}$ (assuming $v_{\nu} = \text{constant}$) for the 545 and 857 GHz channels, using the calibration scheme presented in Sect. 5.4.2. Contrary to the 2013 release, the bolometer gains are assumed to be constant throughout the mission. The final mapmaking is a simple projection of the data. Contrary to 2013, the far sidelobes (FSL) are not systematically subtracted prior to mapmaking. The Planck products of the HFI mapmaking pipelines are pixelized maps of I, Q, and U, together with their covariances. Map resolution is $N_{\text{side}} = 2048$, and the pixel size is 1.07'. The basic characteristics of the maps are given in Table 6. For details, see (Planck Collaboration VII 2015).

Maps are cleaned for the zodiacal light component, which varies in time, based on templates fitted on the survey difference maps (see Planck Collaboration XIV 2014). These templates are systematically subtracted prior to mapmaking. The Planck total dipole (Solar and orbital) is computed and also subtracted from the data. Contrary to 2013, the far sidelobes (FSL) are not removed from the maps.

Contrary to the previous release, the 2015 delivered maps have their zero level correction already included (both CIB and Galactic zero levels). Note, however, that the zodiacal light has not been accounted for in this procedure. The offsets that have to be removed at each frequency to set the Galactic zero level using zodiacal-light-corrected maps are smaller than those using total maps. As a consequence, corrections of $+0.12$ and $+0.04$ MJy sr$^{-1}$ must be applied to the released maps at 857 and 545 GHz, respectively, and $+3.4 \times 10^{-3}$, $+3.8 \times 10^{-6}$, $+9.4 \times 10^{-7}$, and $+4.3 \times 10^{-7}$ K_{CMB} at 353, 217, 143, and 100 GHz, respectively. For Galactic studies, only the Galactic zero level has to be set, which can be achieved by subtracting from the released maps the CIB levels given in Table 6.

Planck Collaboration: The Planck mission
tor of 1.3). They are used mainly for non-Gaussianity analysis (Planck Collaboration XVII 2015; Planck Collaboration XVI 2015) and for the extraction of lensing deflection maps (Planck Collaboration XV 2015). For these analyses, the results of all four methods are considered to give equivalently robust results, and in fact the dispersion between the four gives a reasonable estimate of the uncertainty of the CMB recovery. Although the statistical properties of these maps give good results when used to fit cosmological models, the best Planck 2015 cosmological parameters are derived from a likelihood code which allows much more detailed tuning of the cosmological parameters are derived from a like-

Table 6. Main characteristics of HFI full mission maps.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reference frequency ν [GHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Number of bolometers</td>
<td>8</td>
</tr>
<tr>
<td>Effective beam FWHM$_\text{a}$ [arcmin]</td>
<td>9.68</td>
</tr>
<tr>
<td>Effective beam FWHM$_\text{b}$ [arcmin]</td>
<td>9.66</td>
</tr>
<tr>
<td>Effective beam ellipticity ϵ [arcmin]</td>
<td>1.186</td>
</tr>
<tr>
<td>Noise per beam solid angle [μK_{CMB}] [kJy sr$^{-1}$]</td>
<td>7.5</td>
</tr>
<tr>
<td>Temperature noise [μK_{CMB}] [deg] [kJy sr$^{-1}$]</td>
<td>1.29</td>
</tr>
<tr>
<td>Polarization noise [μK_{CMB}] [deg] [kJy sr$^{-1}$]</td>
<td>1.96</td>
</tr>
<tr>
<td>Calibration accuracy [%]</td>
<td>0.09</td>
</tr>
<tr>
<td>CIB monopole prediction [MJy sr$^{-1}$]</td>
<td>0.0030</td>
</tr>
</tbody>
</table>

\(a\) Number of bolometers whose data were used in producing the channel map.

\(b\) FWHM of the Gaussian whose solid angle is equivalent to that of the effective beams.

\(c\) FWHM of the elliptical Gaussian fit.

\(d\) Ratio of the major to minor axis of the best-fit Gaussian averaged over the full sky.

\(e\) Estimate of the noise per beam solid angle, as given in \(b1\).

\(f\) Estimate of the noise in intensity scaled to 1° assuming that the noise is white.

\(g\) Estimate of the noise in polarization scaled to 1° assuming that the noise is white.

\(h\) Calibration accuracy (at 545 and 857 GHz, the 5 % accounts for the model uncertainty).

\(i\) According to the Béthermin et al. (2012) model, whose uncertainty is estimated to be at the 20 % level (also for constant ν_l).

8.2. CMB power spectra

The foreground-subtracted, frequency-averaged, cross-half-mission TT spectrum is plotted in Fig. 9, together with the Commander power spectrum at multipoles $\ell < 29$. The figure also shows the best-fit base ΛCDM theoretical spectrum fitted to the Planck TT+lowP likelihood, together with residuals (bottom panel) and ±1σ uncertainties.

8.2.1. Polarization power spectra

In addition to the TT spectra, the 2015 Planck likelihood includes the TE and EE spectra. Figure 10 shows the TE and EE power spectra calculated from the 2015 data and including all frequency combinations. The theory curve shown in the figure is the best-fit base ΛCDM model fitted to the temperature spectra using the Planck TT+lowP likelihood. The residuals shown in Fig. 10 are higher than expected and provide evidence of residual instrumental systematics in the TE and EE spectra. It is currently believed that the dominant source of errors is beam mismatch generating leakage from temperature to polarization at low levels of a few μK^2 in $\Delta \ell$. We urge caution in the interpretation of any features in these spectra, which should be

Planck Collaboration: The Planck mission
Fig. 7. Maximum posterior CMB intensity map at 5′ resolution derived from the joint baseline analysis of Planck, WMAP, and 408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same statistical properties as the rest of the sky.

Fig. 8. Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and 353 GHz. These maps have been highpass-filtered with a cosine-apodized filter between $\ell = 20$ and 40, and the a 17 % region of the Galactic plane has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015). From Planck Collaboration X (2015).

viewed as work in progress. Nonetheless, we find a high level of consistency in results between the TT and the full TT+TE+EE likelihoods. Furthermore, the cosmological parameters (which do not depend strongly on τ) derived from the TE spectra have comparable errors to the TT-derived parameters, and they are consistent to within typically 0.5 σ or better.

8.2.2. Number of modes

One way of assessing the constraining power contained in a particular measurement of CMB anisotropies is to determine the effective number of $a_{\ell m}$ modes that have been measured. This is equivalent to estimating 2 times the square of the total S/N in the power spectra, a measure that contains all the available
Fig. 9. The Planck 2015 temperature power spectrum. At multipoles $\ell \geq 30$ we show the maximum likelihood frequency averaged temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters determined from the MCMC analysis of the base ΛCDM cosmology. In the multipole range $2 \leq \ell \leq 29$, we plot the power spectrum estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ΛCDM theoretical spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in the lower panel. The error bars show $\pm 1\sigma$ uncertainties. From Planck Collaboration XIII (2015).

Fig. 10. Frequency-averaged TE (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical TE and EE spectra plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model are shown in the lower panel in each plot. The error bars show $\pm 1\sigma$ errors. The green lines in the lower panels show the best-fit temperature-to-polarization leakage model, fitted separately to the TE and EE spectra. From Planck Collaboration XIII (2015).

cosmological information if we assume that the anisotropies are purely Gaussian (and hence ignore all non-Gaussian information coming from lensing, the CIB, cross-correlations with other probes, etc.). Carrying out this procedure for the Planck 2013 TT power spectrum data provided in Planck Collaboration XV (2014) and Planck Collaboration XVI (2014), yields the number 826 000 (which includes the effects of instrumental noise, cosmic variance and masking). The 2015 TT data have increased this value to 1 114 000, with TE and EE adding a further 60 000 and 96 000 modes, respectively. From this perspective the 2015 Planck data constrain approximately 55% more modes than in the 2013 release. Of course this is not the whole story, since some pieces of information are more valuable than others, and in fact Planck is able to place considerably tighter constraints on particular parameters (e.g., reionization optical depth or certain

4Here we have used the basic (and conservative) likelihood; more modes are effectively probed by Planck if one includes larger sky fractions.
8.2.3. Peaks in the power spectra

The fidelity with which Planck has measured the C_{ℓ}^{TT}, C_{ℓ}^{EE}, and C_{ℓ}^{TE} power spectra enables us to precisely estimate the underlying cosmological parameters (see Sect. 10), but the C_{ℓ}s are themselves a set of cosmological observables, whose properties can be described independently of any model. The acoustic peaks in the C_{ℓ}s reveal the underlying physics of oscillating sound waves in the coupled photon-baryon fluid, driven by dark matter potential perturbations, and one can talk about the fundamental mode, the first harmonic, and so on. Hence it is natural to ask about the positions of the individual peaks in the power spectra as empirical information that becomes part of the canon of facts now known about our Universe.

Here we use the Planck data directly to fit for the multipole of individual features in the measured TT, TE, and EE power spectra. We specifically use the CMB-only bandpowers given in Planck Collaboration XI (2015), adopting the same weighting scheme within each bin. Fitting for the positions and amplitudes of features in the bandpowers is a topic with a long history, with approaches becoming more sophisticated as the fidelity of the data improved (e.g., Scott & White 1994, Hancock & Rocha 1997, Knox & Page 2000, de Bernardis et al. 2002, Bond et al. 2003, Page et al. 2003, Durrer et al. 2003, Readhead et al. 2004, Jones et al. 2006, Hinshaw et al. 2007, Corasaniti & Melchiorri 2008, Pryke et al. 2009).

Following earlier approaches, we fit Gaussians to the peaks in C_{ℓ}^{TT} and C_{ℓ}^{EE}, but parabolas to the C_{ℓ}^{TE} peaks. We have to remove a featureless damping tail to fit the higher C_{ℓ}^{TT} region and care has to be taken to treat the lowest-ℓ “recombination” peak in C_{ℓ}^{EE}. We explicitly focus on peaks (ignoring the troughs) in the conventional quantity $D_\ell \equiv \ell(\ell+1)C_{\ell}/2\pi$; note that other quantities (e.g., C_{ℓ}) will have maxima at slightly different multipoles, and that the choice of bandpowers to use for fitting each peak is somewhat subjective. Our numerical values, presented in Table 7, are consistent with previous estimates, but with a dramatically increased number of peaks measured. Planck detects 19 peaks (with the eighth C_{ℓ}^{TT} peak detection being marginal), and an essentially equivalent number of troughs.

8.3. CMB lensing products

Planck is the first experiment with the sky coverage, resolution and sensitivity to form a full-sky reconstruction of the projected mass, along every line of sight back to the surface of last scattering. Figure 11 shows the 2015 Planck lensing map (Planck Collaboration XV 2015) using as input the CMB maps produced by the SMICA code. The map combines five possible quadratic estimators based on the various correlations of the CMB temperature (T) and polarization (E and B).

8.4. Likelihood code

8.4.1. CMB likelihood

We adopt the same general methodology for the 2015 likelihood as in 2013, extended to include Planck polarization data. The likelihood is a hybrid combination of a low-multipole pixel-based likelihood with a high-multipole likelihood constructed from cross-spectra. Note that we use the notation “Planck TT” when we are referring to the likelihood derived from the TT spectrum.

At low multipoles we now use Planck instead of WMAP for polarization information. The 70 GHz LFI polarization maps are cleaned with the LFI 30 GHz and HFI 353 GHz maps to mitigate foreground contamination. Based on null-tests, the LFI-cleaned polarization maps are used over 46 % of the sky in the low multipole likelihood (referred to as “lowP”). The Commander temperature-solution, constructed from all Planck frequency maps, together with the Haslam 408 MHz and WMAP maps, is used over 94 % of the sky. The temperature and polarization data are then treated in a unified low-resolution pixel-based manner for the multipole range $\ell = 2$ to 29.

The high-ℓ likelihood uses pseudo-C_ℓ cross-spectra from HFI 100, 143, and 217 GHz maps in a “fiducial Gaussian” approximation, employing analytic covariance matrices calculated for a fiducial cosmological model. Unresolved foregrounds are modelled parametrically using power spectrum templates, with only minor changes to the model adopted in the 2013 analysis. The baseline high-multipole likelihood uses cross-spectra between frequency maps constructed from the first and second halves of the full mission data, to reduce any possible biases from co-temporal systematics. We also make more aggressive use of sky at all frequencies in the 2015 analysis. The most significant change is the addition of the option to include the TE and EE power spectra and the associated covariance matrices into the scheme, to form a combined TT, TE, EE likelihood at high multipoles (referred to as “Planck TT,TE,EE”). Although we find firm evidence for systematics associated with temperature-to-polarization leakage in the TE and EE spectra, these systematics are at low levels. We find a high level of consistency in between the TT, TE, and EE spectra for the cosmological observables.
logical models analysed in the 2015 Planck papers. However, in this data release, we regard the combined TT, TE, and EE Planck results as preliminary.

8.4.2. Lensing likelihood

Our power spectrum measurement constrains the lensing potential power spectrum to a precision of $\pm 2.5\%$, corresponding to a 1.2% constraint on the overall amplitude of matter fluctuations (σ_8), a measurement with considerable power for constraining cosmology. We have constructed two Gaussian bandpower likelihoods based on the lensing power spectrum measurement described in Sect. 8.4.1 and plotted in Fig. 18. The first likelihood uses a conservative bandpower range, $40 \leq L \leq 400$, with linear binning, following the temperature-only likelihood released in 2013. The second likelihood uses a more aggressive range with $8 \leq L \leq 2048$, and bins that are linear in $L^{0.6}$. Both likelihoods incorporate temperature and polarization data. We incorporate uncertainties in the estimator normalization and bias corrections directly into the likelihood, using pre-calculated derivatives of these terms with respect to the CMB temperature and polarization power spectra. The construction of the lensing likelihood is described in Planck Collaboration XV (2015), and its cosmological implications are discussed in detail in Planck Collaboration XIII (2015).

9. Astrophysics products

9.1. The Second Planck Catalogue of Compact Sources

The Second Planck Catalogue of Compact Sources (PCCS2; Planck Collaboration XXVI 2015) is the catalogue of sources detected from the full duration of Planck operations, referred to as the “extended” mission. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources are detected in the single-frequency maps and assigned to one of two sub-catalogues, the PCCS2 or PCCS2E. The first of these allows the user to produce additional sub-catalogues at higher reliabilities than the target 80% reliability of the full catalogue. The total number of sources in the catalogue ranges from 1560 at 30 GHz up to 48 181 sources at 857 GHz. Both sub-catalogues include polarization measurements, in the form of polarized flux densities and orientation angles, or upper-limits, for all seven polarization-sensitive Planck channels. The number of sources with polarization information (other than upper-limits) in the catalogue ranges from 113 in the lowest polarized frequency channel (30 GHz) up to 666 in the highest polarized frequency channel (353 GHz). The improved data processing of the full-mission maps and their reduced instrumental noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS (Planck Collaboration XXVIII 2014) and the Early Release Compact Source Catalogue (ERCSC; Planck Collaboration XIII 2011). The improvements are most pronounced for the LFI channels, due to the much larger increase in the data available. The completeness of the 857 GHz channel, however, has not improved; this is due to improvements in the reliability assessment, which resulted in a higher S/N threshold being applied in the formation of this catalogue. The reliability of the PCCS2 catalogue at 857 GHz, however, is higher than that of the PCCS.

The PCCS2 will be released in March 2015.

9.2. The Second Planck Catalogue of Clusters

The Second Planck Catalogue of SZ Sources (PSZ2; Planck Collaboration XXVII 2015), based on the full mission data, is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It
contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing \(10^5\) confirmed clusters. A total of 937 sources from the half-mission catalogue (PSZ1) released in 2013 are included, as well as 716 new detections. The completeness, which is provided as a product with the catalogue, is determined using simulated signal injection, validated through comparison to external data, and is shown to be consistent with semi-analytic expectations. The reliability is characterized using high-fidelity simulated observations and a machine-learning-based quality assessment, which together place a robust lower limit of 83% on the purity. Using simulations, we find that the \(YS_{500}\) estimates are robust to pressure-profile variations and beam systematics; however, accurate conversion to \(Y_{500}\) requires the use of prior information on the cluster extent. Results of a multi-wavelength search for counterparts in ancillary data (which makes use of radio, microwave, infra-red, optical, and X-ray data-sets, and which places emphasis on the robustness of the counterpart match) are included in the catalogue. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. Figure 12 shows the masses and redshifts for the 1093 PSZ2 clusters with known redshifts.

9.3. The Planck Catalogue of Galactic Cold Clumps

The Planck catalogue of Galactic Cold Clumps (PGCC, Planck Collaboration XXVIII 2015) contains Galactic sources that have been identified as cold sources in Planck data. We ran the CoCoCoDet (Montier et al. 2010) multi-frequency point source detection algorithm on the Planck 857, 545, and 353 GHz data and the IRIS 3 THz data (Miville-Deschênes & Lagache 2005), at a resolution of 5'. This selects point sources exhibiting submillimetre excess in the 857, 545, and 353 GHz Planck bands simultaneously, compared to the average colour of the background, which is typical of sources appearing colder than their environment.

The PGCC catalogue is the full version of the Early Cold Core (ECC) catalogue released in 2011, which was part of the ERCSC (Planck Collaboration VII 2011). The ECC catalogue was built on the first 295 days of Planck data, and contains 915 sources selected to ensure \(T < 14\) K and S/N > 15. A statistical description of the ECC and the extended catalogue (including sources at all temperatures and with S/N > 4) is given in Planck Collaboration XXIII (2011), while a detailed description of a subsample of 10 sources was presented in Planck Collaboration XXIX (2011). The PGCC catalogue, included in the 2015 Planck release, has now been built on the full Planck mission data, and contains 13 188 Galactic sources, plus 54 sources located in the Large and Small Magellanic Clouds.

The morphology of each source is obtained using a Gaussian elliptical fit, which is then used to estimate flux densities in all bands through aperture photometry. Depending on the S/N of the flux density estimates, three categories of sources are identified: 6993 sources with reliable flux densities in all bands (FLUX_QUALITY=1); 3755 sources with flux density estimates in all bands except 3 THz (FLUX_QUALITY=2), which are considered very cold candidates; and 2440 sources without reliable flux density estimates (FLUX_QUALITY=3), usually due to a complex environment, which are considered poor candidates.

Distance estimates have been obtained for 5574 PGCC sources by combining seven different methods. While PGCC sources are mainly located in the solar neighbourhood, with 88% of sources with reliable distance estimates lying within 2 kpc of the Sun, distance estimates range from a few hundred parsecs towards local molecular clouds to 10.5 kpc towards the Galactic centre.

The temperature of each source is obtained by fitting a modified blackbody to the spectral energy density from 3 THz to 353 GHz, considering the spectral index \(\beta\) as a free parameter when possible. PGCC sources have an average temperature of \(13-14.5\) K, depending on flux quality category, and range from 5.8 to 20 K. Other physical parameters have been derived, such as the \(H_2\) column density, the physical size, the mass, the density, and the luminosity. It appears that the PGCC contains a large variety of objects with very different properties, from compact and dense cores to large and massive molecular clouds, located all over the sky. While a large Herschel program (HKP-GCC) already followed-up 315 PGCC sources with the PACS and SPIRE instruments, the PGCC catalogue is the first all-sky sample of Galactic cold sources obtained with a homogeneous method, and hence represents a goldmine for investigations of the early phases of star formation in various environments.

9.4. Diffuse Galactic foregrounds from CMB component separation

As was done in 2013, in Planck Collaboration X (2015) we establish a single parametric model of the microwave sky, accounting simultaneously for all significant diffuse astrophysical components and relevant instrumental effects using the Bayesian Commander analysis framework (Eriksen et al. 2004, 2006, 2008). The 2015 analysis is extended in multiple directions. First, instead of 15.5 months of temperature data, the new analysis includes the full Planck mission data—50 months of LFI and 29 months of HFI data—in both temperature and polarization. Second, we now also include the 9-year WMAP observations between 23 and 94 GHz (Bennett et al. 2013) and a 408 MHz survey map (Haslam et al. 1982), providing enough frequency constraints to decompose the low-frequency foregrounds into separate synchrotron, free-free, and spinning dust.
components. Third, we now include the Planck 545 and 857 GHz frequency bands, allowing us to constrain the thermal dust temperature and emissivity index with greater precision, thereby reducing degeneracies between CMB, CO, and free-free emission. Fourth, the present analysis implements a multi-resolution strategy to provide component maps at high angular resolution. Specifically, the CMB is recovered with angular resolution 5' FWHM (Planck Collaboration IX 2015), thermal dust emission and CO $J = 2 \rightarrow 1$ lines are recovered at 7.5 FWHM, and synchrotron, free-free, and spinning dust are recovered at 1' FWHM.

An important difference with respect to 2013 is that we employ individual detector and detector set maps as inputs, instead of fully combined frequency maps. The increase in the number of input maps allows us to make many null tests that are used to reject individual maps exhibiting significant levels of systematic effects. In addition, in our analysis we allow our model to fit for two important instrumental effects: relative calibration between detectors; and bandpass uncertainties.

The sum of these improvements allows us to reconstruct a total of six primary emission mechanisms in temperature: CMB; synchrotron; free-free; spinning dust; CO; and thermal dust emission. In addition to two secondary components, namely thermal SZ emission around the Coma and Virgo regions, and molecular line emission between 90 and 100 GHz. For polarization, we reconstruct three primary emission mechanisms: CMB; synchrotron; and thermal dust. All of these components are delivered as part of the 2015 Planck release.

Figures 14 and 15 (Planck Collaboration X 2015) show the diffuse Galactic foreground component determined from component separation in temperature and polarization. Figure 16 shows the spectra of fluctuations of diffuse foreground components in temperature and polarization, compared to the CMB. The sky model presented in this paper provides an impressive fit to the current data, with temperature residuals at the few microkelvin level at high latitudes across the CMB-dominated frequencies, and with median fractional errors below 1% in the Galactic plane across the Planck frequencies. For polarization, the residuals are statistically consistent with instrumental noise at high latitudes, but limited by significant temperature-to-polarization leakage in the Galactic plane. Overall, this model represents the most accurate and complete description currently available of the astrophysical sky between 20 and 857 GHz.

9.5. Carbon monoxide emission

Carbon monoxide emission lines are present in all HFI frequency bands, except 143 GHz. Using component separation techniques, the three lowest rotational transitions can be extracted from Planck data, providing full sky maps of the CO $J = 1 \rightarrow 0$, $J = 2 \rightarrow 1$, and $J = 3 \rightarrow 2$ transitions (Planck Collaboration XIII 2014). For the 2015 release, data from the full mission and better control of systematic errors lead to better maps. Table 8 summarizes the products. Figure 14 shows the Commander maps of all three transitions.

- Type 1 maps are produced by a single-channel analysis, where individual bolometer maps are linearly combined to produce maps of the CO(1→0), CO(2→1), and CO(3→2) emission lines at the native resolution of the Planck maps. Although noisier than the other approaches, using information from a single channel strongly limits contamination from other Galactic components, such as dust or free-free emission. This makes Type 1 maps suitable for studying emission in the Galactic disk and CO-rich regions, but not for the high-Galactic latitudes where the CO emission is below the noise level.

- Type 2 maps of CO(1→0) and CO(2→1) have been obtained using multi-channel information (i.e., using linear combination of Planck channel maps smoothed to 15'). Using frequency maps, this type of map has a higher signal-to-noise ratio, allowing for their use in fainter high-Galactic latitude regions. They are, however, more susceptible to dust contamination, especially for CO(2→1), which makes them less suitable in the Galactic plane than Type 1 maps.

- A high-resolution Type 3 map, as defined in Planck Collaboration XIII (2014), is not being delivered in the 2015 data release. Alternatively, another set of CO maps has been produced as part of the full Commander baseline multi-component model, which is described in Planck Collaboration X (2015).

Type 1 and Type 2 maps are released with associated standard deviation maps, error maps, and masks. The suite of tests detailed in Planck Collaboration XIII (2014) has been repeated on the new Type 1 and Type 2 maps, which have been found to perform as well as their 2013 counterparts, even though small variations (≤ 2 to 5 K km s$^{-1}$) exist in the Galactic plane.

9.5.1. All-sky Sunyaev-Zeldovich emission

The 30 to 857 GHz frequency channel maps from the Planck satellite survey were used to construct an all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect Planck Collaboration XXII (2015). As discussed in Planck Collaboration XXI (2014), we apply to those maps specifically tailored component separation algorithms, NILC Hurier et al. (2010) and NILC Remazeilles et al. (2011), that allow us to separate the tSZ emission from foreground contamination, including the CMB. An orthogonal view of the reconstructed Compton y-map in Healpix pixelization is presented in Fig. 17. This y-map has been characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales and CIB and extragalactic point sources at small angular scales. Blindly-detected clusters in this map are consistent with those from the PSZ2 catalogue Planck Collaboration XXVII (2015), both in terms of cluster numbers and integrated flux. Furthermore, by stacking individually undetected groups and clusters of galaxies we find that the

Fig. 13. All-sky distribution of the 13 188 PGCC Galactic cold clumps (black dots) and the 54 cold sources (grey dots) located in the Large and Small Magellanic Clouds. The background map is the 857 GHz Planck band, shown in logarithmic scale from 10^{-2} to 10^{5} MJy sr$^{-1}$.

Figures 14 and 15 (Planck Collaboration X 2015) show the diffuse Galactic foreground components determined from component separation in temperature and polarization. Figure 16 shows the spectra of fluctuations of diffuse foreground components in temperature and polarization, compared to the CMB. The sky model presented in this paper provides an impressive fit to the current data, with temperature residuals at the few microkelvin level at high latitudes across the CMB-dominated frequencies, and with median fractional errors below 1% in the Galactic plane across the Planck frequencies. For polarization, the residuals are statistically consistent with instrumental noise at high latitudes, but limited by significant temperature-to-polarization leakage in the Galactic plane. Overall, this model represents the most accurate and complete description currently available of the astrophysical sky between 20 and 857 GHz.
Fig. 14. Maximum posterior intensity maps derived from the joint analysis of Planck, WMAP, and 408 MHz observations (Planck Collaboration X 2015). From left to right, top to bottom: CMB; synchrotron; free-free; spinning dust; thermal dust; line emission around 90 GHz; CO $J = 1 \rightarrow 0$; CO $J = 2 \rightarrow 1$, and CO $J = 3 \rightarrow 2$.

Table 8. Summary of main CO product characteristics.

<table>
<thead>
<tr>
<th>Map</th>
<th>Algorithm</th>
<th>CO line</th>
<th>Resolution [arcmin]</th>
<th>Noise rms [$K_{RJ} \text{ km s}^{-1}$]</th>
<th>Analysis details</th>
<th>Frequencies [GHz]</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15' FWHM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60' FWHM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>MILCA</td>
<td>$J = 1 \rightarrow 0$</td>
<td>9.6</td>
<td>1.4</td>
<td>0.34</td>
<td>100 (bol maps)</td>
<td>CO, CMB</td>
</tr>
<tr>
<td></td>
<td>MILCA</td>
<td>$J = 2 \rightarrow 1$</td>
<td>5.0</td>
<td>0.53</td>
<td>0.16</td>
<td>217 (bol maps)</td>
<td>CO, CMB, dust</td>
</tr>
<tr>
<td></td>
<td>MILCA</td>
<td>$J = 3 \rightarrow 2$</td>
<td>4.8</td>
<td>0.55</td>
<td>0.18</td>
<td>353 (bol maps)</td>
<td>CO, dust</td>
</tr>
<tr>
<td>Type 2</td>
<td>MILCA</td>
<td>$J = 1 \rightarrow 0$</td>
<td>15</td>
<td>0.39</td>
<td>0.085</td>
<td>70, 100, 143, 217, 353</td>
<td>CO, CMB, dust, free-free</td>
</tr>
<tr>
<td></td>
<td>MILCA</td>
<td>$J = 2 \rightarrow 1$</td>
<td>15</td>
<td>0.11</td>
<td>0.042</td>
<td>70, 143, 217, 353</td>
<td>CO, CMB, dust, free-free</td>
</tr>
<tr>
<td></td>
<td>Commander</td>
<td>$J = 1 \rightarrow 0$</td>
<td>60</td>
<td>...</td>
<td>0.084</td>
<td>0.408–857</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>Commander</td>
<td>$J = 2 \rightarrow 1$</td>
<td>60</td>
<td>...</td>
<td>0.037</td>
<td>0.408–857</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>Commander</td>
<td>$J = 3 \rightarrow 2$</td>
<td>60</td>
<td>...</td>
<td>0.060</td>
<td>0.408–857</td>
<td>Full</td>
</tr>
<tr>
<td>Type 3</td>
<td>Commander</td>
<td>$J = 2 \rightarrow 1^{a}$</td>
<td>7.5</td>
<td>0.090</td>
<td>0.031</td>
<td>143–857</td>
<td>CO, CMB, dust</td>
</tr>
<tr>
<td></td>
<td>Commander-Ruler</td>
<td>$J = 1 \rightarrow 0^{c}$</td>
<td>5.5</td>
<td>0.19</td>
<td>0.082</td>
<td>30–353</td>
<td>CO, CMB, dust, low-freq</td>
</tr>
</tbody>
</table>

a Formally a weighted average of CO $J = 2 \rightarrow 1$ and $J = 3 \rightarrow 2$, but strongly dominated by CO $J = 2 \rightarrow 1$.
b Formally a weighted average of CO $J = 1 \rightarrow 0$, $J = 2 \rightarrow 1$ and $J = 3 \rightarrow 2$, but strongly dominated by CO $J = 1 \rightarrow 0$.
c Only published in 2013.

γ-map is consistent with tSZ emission even for low S/N regions. Using foreground models derived in Planck Collaboration XXIII (2015) we are able to measure the tSZ angular power spectrum over 50% of the sky. We conclude that the γ-map is dominated by tSZ signal in the multipole range, $20 < \ell < 800$. Similar results are obtained from a high-order statistic analysis. The reconstructed γ-map is delivered as part of the Planck 2015 release.

We also deliver a foreground mask (with known point sources and regions with strong contamination from Galactic emission masked out), a noise variance map, the estimated power spectrum, and the weights for the NILC algorithm.
Fig. 15. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz (Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show, from top to bottom: CMB; synchrotron polarization at 30 GHz; and thermal dust polarization at 353 GHz. The CMB map has been highpass-filtered with a cosine-apodized filter between $\ell = 20$ and 40, and the Galactic plane (defined by the 17% CPM83 mask) has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).

Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (left) and polarization (right). For temperature, each component is smoothed to an angular resolution of 1° FWHM, and the lower and upper edges of each line are defined by masks covering 81 and 93% of the sky, respectively. For polarization, the corresponding smoothing scale is 40′, and the sky fractions are 73 and 93%.

10. Planck 2015 cosmology results

Since their discovery, anisotropies in the CMB have contributed significantly to defining our cosmological model and measuring its key parameters. The standard model of cosmology is based upon a spatially flat, expanding Universe whose dynamics are governed by General Relativity and dominated by cold dark matter and a cosmological constant (Λ). The seeds of structure have Gaussian statistics and form an almost scale-invariant spectrum of adiabatic fluctuations. The 2015 Planck data remain in excellent agreement with this paradigm, and continue to tighten the constraints on deviations and reduce the uncertainty on the key cosmological parameters.

The major methodological changes in the steps going from sky maps to cosmological parameters are discussed in Planck Collaboration XII (2015); Planck Collaboration XIII (2015). These include the use of Planck polarization data instead of WMAP, changes to the foreground masks to include more sky and dramatically reduce the number of point source “holes,” minor changes to the foreground models, improve-
Table 9. Parameter 68% confidence levels for the base ΛCDM cosmology computed from the Planck CMB power spectra, in combination with the CMB lensing likelihood ("lensing").

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Planck TT+lowP+lensing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_b h^2</td>
<td>0.02226 ± 0.00023</td>
</tr>
<tr>
<td>Ω_c h^2</td>
<td>0.1186 ± 0.0020</td>
</tr>
<tr>
<td>Ω_m h^2</td>
<td>0.1415 ± 0.0019</td>
</tr>
<tr>
<td>σ_8</td>
<td>0.09591 ± 0.00045</td>
</tr>
<tr>
<td>σ_8σ_8 = 1</td>
<td>0.4521 ± 0.0088</td>
</tr>
<tr>
<td>Age/Gyr</td>
<td>13.799 ± 0.038</td>
</tr>
<tr>
<td>r_s_{seff}</td>
<td>147.60 ± 0.43</td>
</tr>
<tr>
<td>k_eq</td>
<td>0.01027 ± 0.00014</td>
</tr>
</tbody>
</table>

10.1. Cosmological parameters

Planck’s measurements of the cosmological parameters derived from the full mission are presented and discussed in Planck Collaboration XIII (2015). As in our previous release, the data are in excellent agreement with the predictions of the 6-parameter ΛCDM model (see Table 9), with parameters tightly constrained by the angular power spectrum. The best-fit model parameters from the full mission are typically within a fraction of a standard deviation of their results from Planck Collaboration XVI (2014), with no outliers. The constraints on the parameters of the base ΛCDM model have improved by up to a factor of 3. The largest shifts are in the scalar spectral index, n_s, which has increased by 0.7σ, and the baryon density, ω_b, which has increased by 0.6σ. Both of these shifts are partly due to correction of a systematic error that contributed to a loss of power near ℓ = 1800 in the 2013 results Planck Collaboration XIII (2015). This systematic also biased the inferences on Ω_b slightly low (by less than 0.5σ). In addition, the overall amplitude of the observed spectrum has shifted upwards by 2% (in power), due to a calibration change, and the optical depth to Thomson scattering, τ, has shifted down by nearly 1σ. These shifts approximately cancel in the derived normalization of the matter power spectrum. The remaining shifts are consistent with the known changes in noise level, time-stream filtering, absolute calibration, beams, and other aspects of the data processing.

Both the angular size of the sound horizon, θ_s, and the cold dark matter density, ω_c, have become significantly better determined. The data at high-ℓ are now so precise, and the polarization data so constraining, that we not only see very strong evi-
dence for three species of light neutrinos, but can measure the ef-
fective viscosity of the neutrino “fluid” to be non-zero at the 9σ level. The constraint on the baryon density, ω_B, is now compa-
rable with the best quoted errors from big bang nucleosynthesis and suggests the possibility of calibrating nuclear capture cross-
sections from CMB observations. The addition of polarization data has improved by an order of magnitude our upper limit on the
annihilation rate of dark matter.

Despite trying a wide range of extensions to the basic, 6-
parameter ΛCDM model, we find no significant evidence for a failure of the model. Within each extension of the param-
ter space, the default parameter values for the ΛCDM model remain a good fit to the data. This continues to hold when we combine the Planck data with other measurements, such as the distance scale measured by baryon acoustic oscillations (BAO) in galaxy surveys or Type Ia supernovae, or the growth of struc-
ture determined by redshift-space distortions. Since our best-
fit cosmology has shifted by very little since our 2013 release, we continue to see tensions with some analyses of other astrophysical data sets (e.g., the abundance of clusters of galax-
ies and weak gravitational lensing of galaxies or cosmic shear, and distances measured by BAO in the Lyα forest at high-z). Planck Collaboration XIII (2015) shows that these tensions cannot be resolved with standard single parameter extensions of the base ΛCDM model. Resolving these discrepancies remains an
area of active research.

10.2. Constraints from large angular scales

The anisotropy at large angular scales, particularly the polariza-
tion, allows us to place tight constraints on the optical depth
to Thomson scattering, τ, and the tensor-to-scalar ratio, r. The Planck temperature data, in combination with CMB lensing and
low-ℓ polarization measured at 70 GHz, prefer a lower optical
depth, τ = 0.066 ± 0.016, than the earlier inference from WMAP9 (τ = 0.09, which was used in our 2013 analysis), which implies a lower redshift of reionization (z_reion = 8.8^{+1.7}_{-1.4}). When cleaned of foregrounds using our 353 GHz channel, the WMAP polarization data are in good agreement with a lower optical
depth. With the dramatic improvement in our CMB lensing de-
tection, we are able to independently constrain τ, finding com-
parably tight and consistent results (τ = 0.071 ± 0.016) without the
use of low-ℓ polarization. This provides additional confidence in the
results.

While improved constraints on polarization at low-ℓ will eventually allow us to study the reionization epoch in more de-
tail, at present the largest impact of the change in τ comes from the implied downward shift in the inferred matter power spec-
trum normalization, σ_8. As it happens, much of the downward
shift in this parameter is largely cancelled by the upward shift in the CMB spectrum arising from the improved calibration in the
current data release.

Gravitational waves entering the horizon between recombi-
nation and today give a “tensor” contribution to the large-scale temperature and polarization anisotropies. Our strongest Planck-
only constraint still comes from temperature anisotropies at ℓ < 10^2 (or k ≤ 0.01 Mpc^{-1}), and is thus limited by cos-
mic variance and model-dependent. Tensor modes also gener-
ate a B-mode signal, which peaks at ℓ = 10^2, slightly smaller scales than the bulk of the temperature signal. The cosmologi-
cal landscape became more complicated earlier this year with the detection of B-mode polarization anisotropy by the BICEP2
project (Ade et al. 2014). Analysis of Planck polarization data at high Galactic latitudes demonstrated that no region of the

sky can be considered dust-free when searching for primor-
dial B-modes (Planck Collaboration Int. XXX 2014), and a joint
analysis of BICEP2/Keck Array observations and Planck po-
larization data (BICEP2/Keck Array and Planck Collaborations
2015) shows that polarized dust emission contributes a signifi-
cant part of the BICEP2 signal. Combining the Planck and re-
vised BICEP2/Keck Array likelihoods leads to a 95 % upper limit of r_{0.002} < 0.09. This eliminates any tension between the BICEP2 and Planck results, and in combination with our other constraints disfavors inflationary models with a φ^4 potential. This and other implications for inflationary models in the early Universe are discussed more fully in Planck Collaboration XIII (2015); Planck Collaboration XX (2015).

10.3. Dark energy and modified gravity

Even though much of the weight in the Planck data lies at high redshift, Planck can still provide tight constraints on dark en-
ergy and modified gravity, especially when used in combination with other probes. This is explored in Planck Collaboration XIV (2015), which focuses on tests of dark energy and modi-
fied gravity on the scales where linear theory is most appli-
cable, since these are the most theoretically robust. As for Planck Collaboration XIII (2015), the results are consistent with the simplest scenario, ΛCDM, though all constraints on dark energy models (including minimally-coupled scalar field mod-
els or evolving equation of state models) and modified gravity
models (including effective field theory, phenomenological, f(R), and coupled dark energy models) are considerably im-
proved with respect to past analyses. In particular, we improve
significantly the constraint on the density of dark energy at early
times, finding that it has to be below 2 % (95 % confidence) of the
critical density, even if it only plays a role below z = 50. Constraints are tighter if early dark energy is present since re-
combination, with Ω_0 < 0.0071 (for the data combination Planck TT+lensing+BAO+SNe+H0), and an even tighter bound if high-
ℓ polarization is included. In models where perturbations are
modified, even if the background is ΛCDM, a few tensions ap-
pear, mainly driven by external data sets.

10.4. Lensing of the CMB

The CMB fluctuations measured by Planck provide a slightly perturbed image of the last-scattering surface, due to the effects of gravitational lensing by large-scale structure. Lensing slightly washes out the acoustic peaks of the CMB power spectrum, an effect we see in the Planck data at high significance. Lensing also introduces distinctive non-Gaussian features into the CMB maps, which allow us to map and make statistical measurements of the gravitational potentials, and the associated matter. These are studied in detail in Planck Collaboration XV (2015). The lensing signal is consistent with the basic, 6-parameter, ΛCDM model that best fits the temperature data. This gives us a very strong consistency check on the gravitational instability paradigm and the growth of structure over more than two decades in expansion factor.

Since it provides sensitivity to the growth of structure be-
tween the surface of last scattering and the present epoch, the lensing signal allows us to measure a number of important pa-
rameters by breaking parameter degeneracies. Figure 18 shows the lensing power spectrum, which for the first time is measured with higher accuracy than it is predicted by the base ΛCDM model that fits the temperature data. With the temperature-only
nominal mission data from the 2013 Planck data release, we were able to make the most powerful measurement of lensing to that date (at a level of 25σ). In the current release, incorporating additional temperature data, as well as entirely new polarization information, we have nearly doubled the power of this measurement to 40σ. This is the most significant detection to date, allowing lensing to be used as part of our precision cosmology suite.

10.5. Inflation

The release of the 2013 Planck data and findings had an enormous impact upon the inflationary community, and the Planck 2015 results continue to stress the importance of this window into the early Universe. Planck Collaboration XX (2015) presents our constraints on inflationary models. The Planck data are consistent with a purely adiabatic, power-law spectrum of initial fluctuations, whose spectral index (n_s = 0.9677 ± 0.0006) is significantly different from unity. The addition of polarization data has significantly improved the constraints on any isocurvature modes, which are now constrained at the percent level. Despite a detailed search, and study of several models, we see no statistically significant evidence for departures from a power law. The combination of Planck data with the BICEP2/Keck Array data provide a strong upper limit on the tensor-to-scalar ratio, and disfavour all monomial models (V(φ) ∝ φ^{2p}) with p ≥ 1. This is an important milestone, since these form the simplest class of inflationary models.

10.6. Primordial non-Gaussianity

(Planck Collaboration XVII 2015) for the first time uses polarization information to constrain non-Gaussian signals left by primordial physics. The results significantly reduce the allowed model space spanned by local, equilateral, and orthogonal non-Gaussianity, tightening constraints by up to 45%. In particular, f_{NL}^{local} = 0.8 ± 5.0, f_{NL}^{equal} = −4 ± 43, and f_{NL}^{retho} = −26 ± 21. In addition, the Planck 2015 analysis covers a greatly extended range of primordial 3-point and 4-point signals, constraining inflationary model space as well as some proposed alternatives to inflation. The global picture that emerges is one of consistency with the premises of ΛCDM cosmology, namely that the structure we observe today is the consequence of the passive evolution of adiabatic, Gaussian, nearly scale-invariant, primordial seed perturbations.

10.7. Cosmology from clusters

In 2013 we found an apparent tension between our primary CMB constraints and those from the Planck cluster counts, with the clusters preferring a lower normalization of the matter power spectrum, σ_8. The comparison is interesting because the cluster counts directly measure σ_8 at low redshift and hence any tension could signal the need for extensions of the base model, such as non-minimal neutrino mass. However, limited knowledge of the normalization of the scaling relation between SZ signal and mass (usually called “mass bias”) continues to hamper the interpretation of this result.

Our 2015 cluster analysis benefits from a larger catalogue (438 objects versus the 189 in 2013), greater control of the selection function, and recent gravitational lensing determinations of the mass bias for Planck clusters. With the larger sample, we now fit the counts in the two-dimensional plane of redshift and S/N, allowing us to simultaneously constrain the slope of the scaling relation and the cosmological parameters. We examine three new empirical determinations of the mass bias from gravitational lensing: Weighing the Giants (von der Linden et al. 2014, WtG); the Canadian Cluster Comparison Project (CCCP; Hoekstra et al., private communication); and results from a new method based on CMB lensing (Melin & Bartlett 2014). We use these three results as priors because they measure the mass scale directly on samples of Planck clusters.

The cluster constraints on σ_8 and Ω_m are statistically identical to those of 2013 when adopting the same scaling relation and mass bias; in this sense, we confirm the 2013 results with the larger 2015 catalogue. Applying the three new mass bias priors, we find that the WtG calibration reduces the tension with the primary CMB constraints to slightly more than 1σ in the base model, and CCCP results in tension at just over 2σ, similar to the case for the CMB lensing calibration. More detailed discussion of constraints from Planck cluster counts can be found in Planck Collaboration XXIV (2015).

11. Planck 2015 astrophysics results

11.1. Low frequency foregrounds

Planck Collaboration XXV (2015) discusses the Galactic foreground emission between 20 and 100 GHz, based on the Commander component separation of Planck and WMAP sky maps (Planck Collaboration X 2015). The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, while synchrotron emission dominates in polarization. Here, we briefly summarize the main results of this study for each of these components.

Comparison with radio recombination line templates validates the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H_α emission with our free-free map shows residuals that correlate with dust optical depth, supporting the idea that a significant fraction of the H_α observed at high-latitude comes from dust scattering. The data show substantial spatial variation in the spinning dust spectrum, with the emission peak (in I_ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for H_α regions to be associated with spinning dust of high peak frequency, plausibly contributed by dust in the photo-dissociation regions around the nebulae. The polarized synchrotron sky image resulting from the Commander component separation (Planck Collaboration XXV 2015; Figs. 15 and 19) presents an analysis of this image, which revisits the geometry and nature of radio loops, extending to the Planck data the earlier study of Vidal et al. (2014) based on WMAP observations. This section will soon be expanded when Planck Collaboration XXV (2015) is submitted.

11.2. Polarized thermal dust emission

Planck has produced the first all-sky map of the polarized emission from dust at submm wavelengths (Figs. 15 and 21). Compared with earlier ground-based and balloon-borne observations (e.g., Benoit et al. 2004; Ward-Thompson et al. 2009; Matthews et al. 2009; Koch et al. 2010; Matthews et al. 2014) this survey is an immense step forward in sensitivity, coverage, and statistics. It provides new insight into the structure of the Galactic magnetic field and the properties of dust, as well as the first statistical characterization of one of the main foregrounds to CMB polarization. The wealth of information encoded in the
11.2.1. The dust polarization sky

Planck Collaboration Int. XIX (2014) presents an overview of the polarized sky as seen by Planck at 353 GHz, the most sensitive Planck channel for polarized thermal dust emission, focusing on the statistics of p and ψ. At all N_H below 10^{22} cm$^{-2}$, p displays a large scatter. The maximum p, observed in regions of moderate hydrogen column density ($N_H < 2 \times 10^{21}$ cm$^{-2}$), is high ($p_{\text{max}} \approx 20\%$). There is a general decrease in p with increasing column density above $N_H \approx 1 \times 10^{21}$ cm$^{-2}$ and in particular a sharp drop above $N_H \approx 10^{22}$ cm$^{-2}$.

The spatial structure of ψ is characterized using the angle dispersion function S, the local dispersion of ψ introduced by Hildebrand et al. (2009). The polarization fraction is found to be anti-correlated with S. The polarization angle is ordered over extended areas of several square degrees. The ordered areas are separated by long, narrow structures of high S that highlight interfaces where the sky polarization changes abruptly. These structures have no clear counterpart in the map of the total intensity, I. They bear a morphological resemblance to features detected in gradient maps of radio polarized emission (Iacobelli et al. 2014).

11.2.2. The Galactic magnetic field

The Planck maps of p and ψ contain information on the magnetic field structure. The data have been compared to synthetic polarized emission maps computed from simulations of anisotropic magnetohydrodynamical turbulence, assuming simply a uniform intrinsic polarization fraction of dust grains (Planck Collaboration Int. XX 2014). The turbulent structure of the magnetic field is able to reproduce the main statistical properties of p and ψ that are observed directly in a variety of nearby clouds (dense cores excluded). The large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties. This study suggests that the large scatter of p at N_H smaller than about 10^{22} cm$^{-2}$ is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to changes in grain shape and/or the efficiency of grain alignment.

The formation of density structures in the interstellar medium involves turbulence, gas cooling, magnetic fields, and gravity. Polarization of thermal dust emission is well suited to studying the role of the magnetic field, because it images structure through an emission process that traces the mass of interstellar matter (Planck Collaboration XI 2014). The Planck I map shows elongated structures (filaments or ridges) that have counterparts in either the Stokes Q or U map, or in both, depending on the mean orientation. The correlation between Stokes maps characterizes the relative orientation between the ridges and the magnetic field. In the diffuse interstellar medium, the ridges are preferentially aligned with...
Fig. 19. Synchrotron polarization amplitude map, $P = \sqrt{Q^2 + U^2}$, at 30 GHz, smoothed to an angular resolution of 40', produced by the diffuse component separation process described in (Planck Collaboration X 2015) using Planck and WMAP data.

Fig. 20. All-sky view of the magnetic field and total intensity of synchrotron emission measured by Planck. The colours represent intensity. The “drapery” pattern, produced using the line integral convolution (LIC, Cabral & Leedom 1993), indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization. Where the field varies significantly along the line of sight, the orientation pattern is irregular and difficult to interpret.
Fig. 21. Dust polarization amplitude map, $P = \sqrt{Q^2 + U^2}$, at 353 GHz, smoothed to an angular resolution of 10′, produced by the diffuse component separation process described in (Planck Collaboration X 2015) using Planck and WMAP data.

Fig. 22. All-sky view of the magnetic field and total intensity of dust emission measured by Planck. The colours represent intensity. The “drapery” pattern, produced using the line integral convolution (LIC, Cabral & Leedom 1993), indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization. Where the field varies significantly along the line of sight, the orientation pattern is irregular and difficult to interpret.
the magnetic field measured on the structures. This statistical trend becomes more striking for decreasing column density and, as expected from the potential effects of projection, for increasing polarization fraction (Planck Collaboration Int. XXXII 2014). Towards nearby molecular clouds the relative orientation changes progressively from preferentially parallel in areas with the lowest \(N_\text{H} \) to preferentially perpendicular in the areas with the highest \(N_\text{H} \) (Planck Collaboration Int. XXXV 2015). This change in relative orientation might be a signature of the formation of gravitationally-bound structures in the presence of a dynamically-important magnetic field.

The relation between the structure of matter and the magnetic field is also investigated in Planck Collaboration Int. XXXIII (2014), modelling the variations of the Stokes parameters across three filaments for different hypotheses on \(p \). For these representative structures in molecular clouds the magnetic fields in the filaments and their background have an ordered component with a mean orientation inferred from Planck polarization data. However, the mean magnetic field in the filaments does not have the same orientation as in the background, with a different configuration in all three cases examined. Planck Collaboration Int. XXXIV (2015) analyzes the magnetic field in a massive star forming region, the Rosette Nebula and parent molecular cloud, combining Faraday rotation measures from the ionized gas with dust polarized emission from the swept-up shell. This same methodology and modelling framework could be used to study the field structure in a sample of massive star forming regions.

11.2.3. Dust polarization properties

Galactic interstellar dust consists of components with different sizes and compositions and consequently different polarization properties. The relatively large grains that are in thermal equilibrium and emit the radiation seen by Planck in the submm also extinguish and polarize starlight in the visible (Martin 2007). Comparison of polarized emission and starlight polarization on lines of sight probed by stars is therefore a unique opportunity to characterize the properties of polarizing grains. For this comparison, Planck Collaboration Int. XXI (2014) use \(P \) and \(I \) in the Planck 353 GHz channel and stellar polarization observations in the \(V \) band, the degree of polarization, \(p_v \), and the optical depth to the star, \(\tau_v \). Lines of sight through the diffuse interstellar medium are selected with comparable values of the column density as estimated in the submm and visible and with polarization directions in emission and extinction that are close to orthogonal. Through correlations involving many lines of sight two ratios are determined, \(R_{5/\nu} = (P/I)/(p_v/\tau_v) \) and \(R_{P/I} = P/p_v \), the latter focusing directly on the polarization properties of the grains contributing to polarization. The first ratio, \(R_{5/\nu} \), is compatible with predictions based on a range of dust models that have been developed for the diffuse interstellar medium (e.g., Martin 2007; Draine & Fraisse 2009). This estimate provides new empirical validation of many of the common underlying assumptions of the models, but is not very discriminating among them. The second ratio, \(R_{P/I} \), is higher than model predictions by a factor of about 2.5. A comparable difference between data and model is observed for \(I/\tau_v \) (Planck Collaboration Int. XXIX 2014). To address this, changes will be needed in the optical properties of the large dust grains contributing to the submm emission and polarization.

The spectral dependence in the submm is also important for constraining dust models. In Planck Collaboration Int. XXII (2014) the Planck and WMAP data are combined to characterize the frequency dependence of emission that is spatially correlated with dust emission at 353 GHz, for both intensity and polarization, in a consistent manner. At \(\nu \gtrsim 100 \text{GHz} \), the mean spectral energy distribution (SED) of the correlated emission is well fit by a modified blackbody spectrum for which the mean dust temperature of 19.6 K (derived from an SED fit of the dust total intensity up to 3000 GHz, i.e., \(100 \mu\text{m} \)) is adopted. It is found that the opacity has a spectral index 1.59 \(\pm 0.02 \) for polarization and 1.51 \(\pm 0.01 \) for intensity. The difference between the two spectral indices is small but significant. It might result from differences in polarization efficiency among different components of interstellar dust. Planck Collaboration Int. XXII (2014) also finds that the spectral energy distribution increases with decreasing frequency at \(\nu < 60 \text{GHz} \), for both intensity and polarization. The rise of the polarization SED towards low frequency might be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission.

11.2.4. Polarized dust and the CMB

The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the CMB at frequencies above 100 GHz. The Planck sky coverage, spectral coverage from 100 to 353 GHz for HFI, and sensitivity are all important for component separation of the polarization data. Planck Collaboration Int. XXX (2014) measures the polarized dust angular power spectra \(C_{EE}^{\ell} \) and \(C_{BB}^{\ell} \) over the multipole range \(40 < \ell < 600 \) well away from the Galactic plane, providing cosmologists with a precise characterization of the dust foreground to CMB polarization.

The polarization power spectra of the dust are well described by power laws in multipole, \(C_{\ell} \propto \ell^{\alpha} \), with exponents \(\alpha = \pm 2.42 \pm 0.02 \) for both the \(EE \) and \(BB \) spectra. The amplitudes of the polarization power spectra are observed to scale with the average dust brightness as \((I)^{1^9} \), similar to the scaling found earlier for power spectra of \(I \) (Miville-Deschênes et al. 2007). The frequency dependence of the power spectra for polarized thermal dust emission is consistent with that found for the modified blackbody emission in Planck Collaboration Int. XXII (2014). A systematic difference is discovered between the amplitudes of the Galactic \(B\)- and \(E\)-modes, such that \(C_{\ell}^{BB}/C_{\ell}^{EE} = 0.5 \). There is additional information coming from the dust TEM and TB spectra. These general properties apply at intermediate and high Galactic latitude in regions with low dust column density. The data show that there are no windows in the sky where primordial CMB B-mode polarization can be measured without subtraction of polarized dust emission.

12. Summary and Conclusions

This paper is an overview of the Planck 2015 release, summarizing the main features of the products being released and the main scientific conclusions that we draw from them at this time. Some of the highlights of this release are listed below.

- Data from the entire mission are now used, including both temperature and polarization, and significant improvements have been made in the understanding of beams, pointing, calibration, and systematic errors. As a result, the new products are less noisy, but even more importantly they are much better understood and the overall level of confidence is significantly increased.
A large set of simulations accompanies the release, including up to 10,000 realizations of signal and noise; this has been used to test and verify methods of analysis, and also to estimate uncertainties.

We measure the amplitude and direction of the Solar dipole to the best precision so far.

One of the most notable improvements in this data set is that now LFI, HFI, and WMAP agree to within a few tenths of a percent on angular scales from the dipole through the first acoustic peak.

Polarization is a new product in this release, and especially on large angular scales systematic effects are not yet fully controlled. This is an area where we expect to make significant improvements in the coming months. Nevertheless, our polarization data are already making important contributions in a variety of analyses.

More specifically, we are able to use the TE and EE angular power spectra at small scales (and to a more limited extent, at large angular scales) over the full sky, reaching the expected sensitivity. This allows us to estimate cosmological parameters independently of TT, and in combination with TT.

At large angular scales, we are now able to use Planck-only products to carry out cosmological analysis. Specifically, we can estimate the optical depth of reionization, τ, independently of other experiments. The value of τ is smaller than found in previous determination, implying later reionization.

Foregrounds can be separated effectively over larger areas of the sky, allowing more sky to be used for cosmology, and producing high-quality maps of synchrotron, free-free, spinning dust, thermal dust, and CO emission.

Our 2015 results for cosmology are very consistent with our 2013 results, but with smaller uncertainties, and covering a greater range of science.

Our best-fit 2015 cosmological parameters confirm the basic 6-parameter ΛCDM scenario that we determined in 2013. There is no compelling evidence for any extensions to the 6-parameter model, or any need for new physics. Depending somewhat on what data combinations are used, five of the six parameters are now measured to better than 1% precision.

Areas that were in “tension” in 2013 (σ8 and weak galaxy lensing), have been confirmed to remain in tension today, although the disagreement is lessened when only particular subsets of the external data are considered.

Using only Planck data, we find that the Universe is flat to 0.7% (1σ). Including BAO data, the constraint tightens to a remarkable 0.25%.

Using the Planck temperature data over the whole sky, together with our recent work combining Planck and BICEP2/Keck data, we have obtained the best current upper limits on the tensor-to-scalar ratio obtained to date.

We have obtained improved limits on primordial non-gaussianity (fNL), which are about 30% tighter than before, reaching the expected sensitivity of Planck when including polarization.

Models of inflation are more tightly constrained than ever before, with the simplest dφ models being ruled out for n ≥ 2.

We have obtained the tightest limits yet on the amplitude of primordial magnetic fields.

Planck’s measurement of lensing of the CMB has the highest signal-to-noise ratio yet achieved, 40σ.

The second Planck catalogues of compact sources, Sunyaev-Zeldovich clusters, and Galactic cold clumps, are larger than the previous ones and better-characterized in terms of completeness and reliability.

Planck continues to provide a rich harvest of data for cosmology and astrophysics. At the end of March 2015, we will release some additional products that were not ready at this time.

Acknowledgements. Planck is a project of the European Space Agency in cooperation with the scientific community, which started in 1993. ESA led the project, developed the satellite, integrated the payload into it, and launched and operated the satellite. Two Consortia, comprising around 100 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed and operated the scientific instruments LFI and HFI. The Consortia are also responsible for scientific processing of the acquired data. The Consortium are led by the Principal Investigators: J.-L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA’s US Planck Project, based at JPL, and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. A third Consortium, led by H.J. Norgaard-Nielsen and supported by the Danish National Research Council, contributed to the refector programme. These three Consortia, together with ESA’s Planck Science Office, form the Planck Collaboration. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU/IN2P3 (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU).

References

BICEP2/Keck Array and Planck Collaborations. A joint analysis of BICEP2/Keck Array and Planck data. 2015, submitted to PRL

Planck Collaboration: The Planck mission

2481, arXiv:1006.5599

1 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
2 Aalto University Metsähovi Radio Observatory and Dept of Radio Science and Engineering, PO. Box 13000, FI-00076 AALTO, Finland
3 Aalto University Metsähovi Radio Observatory, PO. Box 13000, FI-00076 AALTO, Finland
4 African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, Cape Town, South Africa
5 Agenzia Spaziale Italiana Science Data Center, Via del Politecnico sn, 00133, Roma, Italy
6 Agenzia Spaziale Italiana, Viale Liegi 26, Roma, Italy
7 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
8 Astrophysics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
9 Astrophysics & Cosmology Research Unit, School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
10 Atacama Large Millimeter/submillimeter Array, ALMA Santiago Central Offices, Alonso de Cordova 3107, Vitacura, Casilla 763 0355, Santiago, Chile
11 CITI, University of Toronto, 60 St. George St., Toronto, ON MSS 3H8, Canada
12 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France
13 CRANN, Trinity College, Dublin, Ireland
14 California Institute of Technology, Pasadena, California, U.S.A.
15 Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, U.K.
16 Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan, 1, planta 2, E-44001, Teruel, Spain
17 Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
18 Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
19 DSM/Irfu/SPP, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France
20 DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lynby, Denmark
21 Département de Physique Théorique, Université de Genève, 24, Quai E. Ansermet,1211 Genève 4, Switzerland
22 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
23 Departamento de Física, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo, Spain
24 Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Avda. de los Castros s/n, Santander, Spain
25 Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, Ontario, Canada
26 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
27 Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada
28 Department of Physics and Astronomy, Dana and David Dornsife College of Letter, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A.
29 Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center 435, 3400 N. Charles St., Baltimore, MD 21218, U.S.A.
30 Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
31 Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, U.K.
32 Department of Physics, Florida State University, Keen Physics Building, 77 Chieftan Way, Tallahassee, Florida, U.S.A.
33 Department of Physics, Gustaf Hällström katu 2a, University of Helsinki, Helsinki, Finland
34 Department of Physics, Princeton University, Princeton, New Jersey, U.S.A.
35 Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta, T6G 2G7, Canada
36 Department of Physics, University of California, Berkeley, California, U.S.A.
37 Department of Physics, University of California, One Shields Avenue, Davis, California, U.S.A.
38 Department of Physics, University of California, Santa Barbara, California, U.S.A.
39 Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, U.S.A.
40 Dipartimento di Fisica e Astronomia A. Righi, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127, Bologna, Italy
41 Dipartimento di Fisica e Astronomia G. Galilei, Università degli Studi di Padova, via Marzolo 8, 35131 Padova, Italy
42 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
43 Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma, Italy
44 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, Milano, Italy
45 Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, Italy
46 Dipartimento di Fisica, Università Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
47 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Roma, Italy
48 Discovery Center, Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
49 Dpto. Astrofisica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain
50 European Southern Observatory, ESO Vitacura, Alonso de Cordova 3107, Vitacura, Casilla 19901, Santiago, Chile
51 European Space Agency, ESA, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain
52 European Space Agency, ESA, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain
53 European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
54 Facoltà di Ingegneria, Università degli Studi di Bologna, Via Saragat 1, 44122 Ferrara, Italy
55 Finland Centre for Astronomy with ESO (FINCA), University of Turku, Viäsiäntie 20, FIN-21500, Piikkiö, Finland
56 GEPI, Observatoire de Paris, Section de Meudon, 5 Place J. Janssen, 92195 Meudon Cedex, France
Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4, France
Universities Space Research Association, Stratospheric Observatory for Infrared Astronomy, MS 232-11, Moffett Field, CA 94035, U.S.A.
University Observatory, Ludwig Maximilian University of Munich, Scheinerstrasse 1, 81679 Munich, Germany
University of Granada, Departamento de Física Teórica y del Cosmos, Facultad de Ciencias, Granada, Spain
University of Granada, Instituto Carlos I de Física Teórica y Computacional, Granada, Spain
University of Heidelberg, Institute for Theoretical Physics, Philosophenweg 16, 69120, Heidelberg, Germany
W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, U.S.A.
Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland