Planck 2013 results. XXIX. The Planck catalogue of Sunyaev–Zeldovich sources: Addendum

Planck Collaboration: P. A. R. Ade * et al.

Abstract

We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from Sunyaev–Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~80.6%) are spectroscopic, and associated mass estimates derived from the Y, mass proxy. We also provide a new SZ quality flag, derived from a novel artificial neural network classification of the SZ signal, for the remaining 280 candidates. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readfile with further information on the Planck SZ detections.

Key words. large-scale structure of Universe – Galaxies: clusters: general – Catalogues

1. Introduction

* Corresponding author: N. Aghanim

It is only recently that cluster samples selected via their Sunyaev–Zeldovich (SZ) signal have reached a significant sizes,
Planck Collaboration: Addendum. Planck catalogue of Sunyaev–Zeldovich sources

![Fig. 1: Distribution in the M–z plane of the Planck SZ cluster catalogue (open red circles) (Planck Collaboration XXIX 2013) compared with those from SPT (black) (Reichardt et al. 2013; Bleem et al. 2014) and ACT (green) (Marriage et al. 2011; Hasselfield et al. 2013), MaDCoWS (yellow) (Brodwin et al. 2014), and NORAS and REFLEX from the MCXC meta-catalogue (blue) (Piffaretti et al. 2011) and references therein. Some clusters may appear several times as distinct points due to differences in the mass estimate between surveys. The black dotted lines show the Planck mass limit for the medium-deep survey zone at 20% completeness for a redshift limit of $z = 0.5$.]

Since its delivery March 2013, we have continued to update the PSZ1 catalogue by focusing on the confirmation of newly-discovered clusters in PSZ1. This process has first involved updating the redshifts of some previously-known clusters (Sect. 2). We have also made use of recent results from dedicated follow-up observations conducted by the Planck Collaboration with the RTT150 (Planck Collaboration et al. 2014) and ENO telescopes (Planck Collaboration 2015, in prep.), which together have allowed us to observe and measure redshifts for a few large PSZ1 sources (Sect. 3.1). We have also used published results from PanSTARRS (Liu et al. 2014) and from the latest SPT catalogue (Bleem et al. 2014), as described in Sects. 3.3 and 3.5.

For all clusters with measured redshifts, we have computed the estimated masses using the $Y(z)$ mass proxy (Arnaud et al. 2014 and PXXIX2013; Sec. 4). Finally, we have revisited the cluster candidate classification scheme, which in PXXIX2013 was organised into three classes (class-1, 2, 3) in order of decreasing reliability. As described in Sect. 5, we have now used the SZ spectral energy distribution (SED) to refine the quality assessment of the cluster candidates by adopting a new, novel quality flag derived from the Artificial Neural Network analysis developed by Aghanim et al. (2014).

2. Redshift updates for previously-known clusters

In the external validation process performed in PXXIX2013, a total of 683 PSZ1 sources were associated with clusters published in X-ray, optical, or SZ catalogues, or with clusters found in the NED or SIMBAD databases. We refer to these as previously-known clusters. Their redshifts, when available, were compiled from the literature and a consolidated value was provided with the PSZ1 catalogue. In the present update, we first re-examine the previously-known clusters of the PSZ1 catalogue.
The dedicated follow-up of Planck PSZ1 clusters with RTT150 described in Planck Collaboration et al. (2014) provided updates to the redshifts of 19 previously-known clusters. The follow-up of Planck PSZ1 clusters with ENO telescopes further updated the redshifts of five previously-known clusters. We have updated the redshifts of ten PSZ1 sources associated with SPT clusters provided in Bleem et al. (2014). Finally, we have queried the NED and SIMBAD databases, and searched in the cluster catalogues constructed from the SDSS data (namely Wen et al. 2012 and Rozo et al. 2014), for additional spectroscopic redshifts. When these were available, we report them in the updated version of the PSZ1 catalogue. The full process led us to change the redshifts of 34 previously-known PSZ1 clusters. We have also changed the published photometric redshift estimate of one ACT cluster (ACT-CL J0559-5249) to a spectroscopic redshift value.

In summary, 69 sources from the PSZ1 catalogue associated with previously-known clusters now have updated redshifts. Most of these consist of updates from photometric to spectroscopic values; however, eight redshifts were measured for the first time for previously-known clusters.

3. Planck-discovered clusters

The PSZ1 catalogue contained 366 cluster candidates, classified as class-1 to 3 in order of decreasing reliability, and 178 Planck-discovered clusters confirmed mostly with dedicated follow-up programmes undertaken by the Planck Collaboration. Since the delivery of the PSZ1 catalogue in March 2013, a number of additional confirmations, including results from the community, were performed and redshifts were updated from photometric estimates to spectroscopic values.

Combining the results from follow-up with the RTT150 Planck Collaboration et al. (2014), ENO telescopes (Planck collaboration 2015, in prep.), Liu et al. (2014), Rozo et al. (2014), and Bleem et al. (2014), a total of 86 PSZ1 sources have been newly confirmed as Planck-discovered clusters with measured redshifts.

3.1. From RTT150 results

As part of the Planck Collaboration optical follow-up programme, candidates were observed with the Russian Turkish Telescope (RTT150 3, Planck Collaboration et al. 2014) within the Russian quota of observational time, provided by Kazan Federal University and Space Research Institute (IKI, Moscow). Direct images and spectroscopic redshift measurements were obtained using TUBITAK Faint Object Spectrograph and Camera (TFOS 2). For the highest-redshift clusters, complementary spectroscopic observations were performed with the BTA 6-m telescope of the SAO RAS using the SCORPIO focal reducer and spectrometer (Afanasiev & Moiseev 2005).

These observations have confirmed and measured redshifts for a total of 24 new candidates. Eleven of these have spectroscopic redshifts. We have updated the PSZ1 catalogue by including these newly-measured redshifts.

3.2. From ENO telescopes

Also as part of the Planck Collaboration optical follow-up programme, candidates were observed at European Northern Observatory (ENO 4) telescopes, both in imaging (at IAC80, INT and WHT) and spectroscopy (at NOT, GTC, INT and TNG). The observations were obtained as part of proposals for the Spanish CAT time, and an International Time Programme (ITP), accepted by the International Scientific Committee of the Roque de los Muchachos and Teide observatories. We summarise here the main results of these observing programmes. Further details will be presented in a companion article (Planck Collaboration 2015, in prep.).

These observations have confirmed and provided new redshifts for a total of 26 candidates, that are reported in the updated PSZ1 catalogue. These include the confirmation of 12 SZ sources as newly-discovered clusters: two class-1, high reliability candidates, five class-2, and five class-3 candidates.

3.3. From PanSTARRS

Based on the Panoramic Survey Telescope & Rapid Response System (PanSTARRS, Kaiser et al. 2002) data, Liu et al. (2014) have searched for optical confirmation of the 237 Planck SZ detections that overlap the PanSTARRS footprint.

We only report here the redshifts for unambiguously confirmed clusters. Of these, 15 objects were included in the RTT150 follow-up, for which the redshifts are published in Planck Collaboration et al. (2014), and three objects were included in the ESO follow-up described above. In these cases, we report the Planck Collaboration follow-up redshift values in the updated PSZ1 catalogue. An additional two Planck clusters confirmed by PanSTARRS have a counterpart in the Rozo et al. (2014) catalogue, with spectroscopic redshifts that we update in the PSZ1 catalogue.

A total of 40 Planck-discovered clusters are confirmed, for the first time, by Liu et al. (2014) in the PanSTARRS survey. All of these have measured photometric redshifts that we have reported in the updated PSZ1 catalogue.

3.4. From SPT

A new catalogue of SZ clusters detected with the South Pole Telescope (SPT) cluster catalogue was published in Bleem et al. (2014). It provides an ensemble of spectroscopic and photometric redshifts. Four candidate class-1 and 2 clusters from the PSZ1 catalogue were confirmed and have photometric redshifts in Bleem et al. (2014). These are included in the updated PSZ1 catalogue.

3.5. From SDSS-RedMapper catalogue

Comparison with the SDSS-based catalogue from Rozo et al. (2014) provided confirmation and new redshift values for five Planck-discovered clusters. This includes confirmation of two Planck cluster candidates (one class-2 and one class-3 candidate). We use the spectroscopic redshift values available in the Rozo et al. (2014) in the updated PSZ1 catalogue.

\footnote{ENO: http://www.iac.es/eno.php?lang=en.}
4. Mass estimate

The size–flux degeneracy discussed in, e.g., Planck Collaboration VIII (2011) and PXXIX2013 can be broken when z is known, using the M_{500}–$D_A^{1/3}$ relationship between θ_{500} and Y_{500} (Arnaud et al. 2014). The Y_{500} parameter, denoted Y, is derived from the intersection of the M_{500}–$D_A^{1/3}$ relationship and the size–flux degeneracy curve. It is the SZ mass proxy that is equivalent to the X-ray mass proxy Y_X.

For all the Planck clusters with measured redshifts, Y was computed for our assumed cosmology, allowing us to derive an homogeneously-defined SZ mass proxy, denoted $M_{Y_{500}}$, based on X-ray calibration of the scaling relations (see discussion in PXXIX2013). We show in Fig. 2 (right panel, in red) the distribution of masses obtained from the SZ-based mass proxy for all clusters with measured redshift. Note that since we use an X-ray calibration of the scaling relations, these masses are uncorrected for any bias due to the assumption of hydrostatic equilibrium in the X-ray mass analysis. The shaded black area shows the distribution of masses for clusters with redshifts higher than 0.5. They represent a total of 78 clusters.

5. Cluster candidates

Since the delivery of the Planck catalogue and the confirmation in this addendum of 86 candidates as new clusters, the updated PSZ1 catalogue now contains 280 cluster candidates. In the original PSZ1, these latter were classified as class-1 to 3 in order of decreasing reliability; the reliability being defined empirically from the combination of internal Planck quality assessment and ancillary information (e.g., searches in RASS, WISE, SDSS data). The updated PSZ1 catalogue contains 24 high-quality (class-1) SZ detections whereas lower reliability class-2 and 3 candidates represent 130 and 126 SZ sources, respectively.

With the updated PSZ1 catalogue, we now provide a new objective quality assessment of the SZ sources derived from an artificial neural-network analysis. The construction, training and validation of the network is based on the analysis of the Spectral Energy Distribution (SED) of the SZ signal in the Planck chan-
nels. The implementation is discussed in detail by Aghanim et al. (2014). The neural network was trained with an ensemble of three samples: the confirmed clusters in the PSZ1 catalogue representing good/high-quality SZ signal; the Planck Catalogue of Compact Sources source, representing the IR and radio-source induced detections; and random positions on the sky as examples of noise-induced, very low reliability, detections.

In practice, we provide for each SZ source of the updated PSZ1 catalogue a neural-network quality flag, \(Q_N \), defined as in Aghanim et al. (2014). This flag separates the high quality SZ detections from the low quality sources such that \(Q_N < 0.4 \) identifies low-reliability SZ sources with a high degree of success. Figure 4 summarises for each class of Planck cluster candidate the number of sources below and above the threshold value of \(Q_N = 0.4 \). The class-1 cluster candidates all have \(Q_N > 0.4 \) except for one source for which \(Q_N = 0.39 \). The fraction of ‘good’ \(Q_N > 0.4 \) SZ detections in the class-2 category is about 80%, while the fraction of \(Q_N > 0.4 \) candidates drops to about 30% for the class-3 cluster-candidates.

\[
\text{Number of candidates below/above } Q_N = 0.4
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Class-1} & Q_N < 0.4 & Q_N > 0.4 \\
\hline
\text{Class-2} & & \\
\hline
\text{Class-3} & & \\
\hline
\end{array}
\]

Fig. 4: Number of Planck cluster-candidates below and above the neural-network quality flag threshold \(Q_N = 0.4 \), denoting a high-quality SZ detection, for each reliability class.

6. Summary

We have updated the Planck catalogue of SZ-selected sources detected in the first 15.5 months of observations. The catalogue contains 1227 detections and was validated using external X-ray and optical/NIR data, alongside a multi-frequency follow-up programme for confirmation.

The updated PSZ1 catalogue now contains 947 confirmed clusters, including 264 brand-new clusters, of which 214 have been confirmed by the Planck Collaboration’s follow-up programme. The remaining 280 cluster candidates have been divided into three classes according to their reliability, i.e., the quality of evidence that they are likely to be bona fide clusters. To date, high quality SZ detections in PSZ1 represent 24 sources, all of which are classified as high-quality by our neural-network quality assessment procedure. Lower reliability, class-2 and 3 candidates represent 130 and 126 SZ sources respectively (Table 1). We find that ~ 80% of the class-2 candidates are classified as high-quality by our neural-network quality assessment procedure, whereas only 35% of the class-3 sources are considered as high-quality SZ detections. Based on this assessment, the purity of the updated PSZ1 catalogue is ~ 94%.

A total of 913 Planck clusters (i.e., 74.2% of all SZ detections) now have measured redshifts, of which 736 are spectroscopic values (i.e., 80.6% of all redshifts). The left-hand panel of Fig. 2 shows the distribution in redshift of all clusters (red), and for the clusters with masses above \(5 \times 10^{14} M_\odot \) (shaded black). The median redshift of the PSZ1 catalogue is about 0.23, and of order 35% of the Planck clusters lie at redshifts above \(z \approx 0.3 \).

The origins and types of redshifts are shown in Fig. 3. Association with MCXC clusters (Piffaretti et al. 2011) provides about 49.8% of the redshifts, all of which are spectroscopic. Follow up observations undertaken by the Planck Collaboration provide 24.6% of the redshifts, about two thirds of them being spectroscopic. SDSS-based catalogues yield 11.7% of the redshifts, of which more than half of which are spectroscopic. NED and SIMBAD database searches yield 5.9% of the redshifts, the vast majority of which are spectroscopic. PanSTARRS data provide 4.4% of the redshifts, all of which are photometric. Finally, association with the SPT and ACT SZ catalogues represent ~ 3.5% of all redshifts, most of which are spectroscopic.

For the Planck clusters with measured redshifts, we have provided a homogeneously-defined mass estimated from the Compton Y parameter. The \(M-Z \) distribution of the Planck clusters is shown by open red circles in Fig. 1, where it is compared with other large cluster surveys. Note that the masses are not homogenised and some clusters may appear several times due to differences in the mass estimation methods between surveys. We see that Planck cluster distribution probes a unique region in the \(M-Z \) space occupied by massive, \(M \geq 5 \times 10^{14} M_\odot \), high-redshift (\(z \geq 0.5 \)) clusters. The Planck detections almost double the number of massive clusters above redshift 0.5 with respect to other surveys.

Acknowledgements. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); FUI; RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). The authors thank N. Schartel, ESA XMM-Newton project scientist, for granting the DDT used for confirmation of SZ Planck candidates. The authors thank TUBITAK, IKI, KFU and AST for support in using RTT150; in particular we thank KFU for providing significant amount of their observing time at RTT150. We also thank BTA 6-m telescope TAC for support of optical follow-up project. The authors acknowledge the use of the INT and WHT telescopes operated on the island of La Palma by the Isaac Newton Group of Telescopes at the Spanish Observatorio del Roque de los Muchachos of the IAC; the NOT, operated on La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, at the Spanish Observatorio del Roque de los Muchachos; the TNG, operated on La Palma by the Fundacion Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos; and the IAC80 telescope operated on the island of Tenerife by the IAC at the Spanish Observatorio del Teide. Part of this research has been carried out with telescope time awarded by the CCI International Time Programme. The authors thank the TAC of the MPG/ESO-2.2m telescope for support of optical follow-up wih WFI under Max Planck time. Observations were also conducted with ESO NTT at the La Silla Paranal Observatory. This research has made use of SDSS-III data. Funding for SDSS-III http://www.sdss3.org/ has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and DoE. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration. This research has made use of the following databases: the NED and IRSA databases, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA; SIMBAD, operated at CDS, Strasbourg, France; SZ cluster database http://szcluster-db.las.ub-psud.fr and SZ repository operated by IDOC operated by IAS under contract with CNES and CNRS.
Planck Collaboration: *Addendum. Planck* catalogue of Sunyaev–Zeldovich sources

Table 1: Summary of the updates of PSZ1v2 for each cluster or candidate type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>redshift</td>
<td>type number</td>
</tr>
<tr>
<td>"Previously known"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undef</td>
<td>29</td>
<td>–8</td>
</tr>
<tr>
<td>estim</td>
<td>5</td>
<td>–4</td>
</tr>
<tr>
<td>phot</td>
<td>97</td>
<td>–43</td>
</tr>
<tr>
<td>spec</td>
<td>552</td>
<td>+55</td>
</tr>
<tr>
<td>"Planck discovered"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undef</td>
<td>19</td>
<td>–6</td>
</tr>
<tr>
<td>phot</td>
<td>72</td>
<td>+50</td>
</tr>
<tr>
<td>spec</td>
<td>87</td>
<td>+42</td>
</tr>
<tr>
<td>Class – 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undef</td>
<td>54</td>
<td>–30</td>
</tr>
<tr>
<td>phot</td>
<td></td>
<td>+22</td>
</tr>
<tr>
<td>spec</td>
<td></td>
<td>+15</td>
</tr>
<tr>
<td>Class – 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undef</td>
<td>170</td>
<td>–40</td>
</tr>
<tr>
<td>phot</td>
<td></td>
<td>+26</td>
</tr>
<tr>
<td>spec</td>
<td></td>
<td>+14</td>
</tr>
<tr>
<td>Class – 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undef</td>
<td>142</td>
<td>–16</td>
</tr>
<tr>
<td>phot</td>
<td></td>
<td>+10</td>
</tr>
<tr>
<td>spec</td>
<td></td>
<td>+6</td>
</tr>
</tbody>
</table>

References

Arnaud, M., XX, x., YY, y., & ZZ, z. 2014, in prep.

Appendix A: Description of the updated PSZ1 catalogue

The updated *Planck* catalogue of SZ sources is available at PLA

5 http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&project=planck

and SZ cluster database. The updated PSZ1 gathers in a single Table all the entries of the delivered catalogue based mainly on the *Planck* data and of the external validation information, based on ancillary data (Appendices B and C of Planck Collaboration XXIX (2013) respectively). It also contains additional entries. It is provided in a fits format, together with a readme file.

The updated catalogue contains, when available, cluster external identifications and consolidated redshifts. We added two new entries namely the redshift type and the bibliographic reference. The three entries associated with the consolidated redshift reported in the catalogue are thus:

- Type of redshift: a string providing the different cases.
 - undef: undefined
 - estim: estimated from galaxies magnitudes
 - phot: photometric redshift
 - spec: spectroscopic redshifts

- Source for redshift: an integer value representing the origin of the redshifts.
 -1: No redshift available
 1: MCXC updated compilation
 2: Databases NED and SIMBAD-CDS
 3: SDSS cluster catalogue from Wen et al. (2012)
 4: SDSS cluster catalogue from Szabo et al. (2011)
 5: SPT
 6: ACT
 7: Search in SDSS galaxy catalogue from *Planck* Collaboration from Fromenteau PhD 2010 and Fromenteau et al. (private comm.)
 8: SDSS catalogue from Rozo et al. (2014)
 10: Pan-STARRS1 Survey confirmation
 20: XMM-Newton confirmation from *Planck* Collab.

7 The external identification corresponds to the first identifier as defined in the external validation hierarchy adopted in Planck Collaboration XXIX (2013).
50: ENO confirmation from Planck Collab.
60: WFI-imaging confirmation from Planck Collab.
65: NTT-spectroscopic confirmation from Planck Collab.
500: RTT confirmation from Planck Collab.
600: NOT confirmation from Planck Collab.
650: GEMINI-spectroscopic confirmation from Planck Collab.

– Bibliographical references for the redshift

We also added a new entry describing further the quality of the SZ detection. This is the flag Qν derived from the artificial neural network SED-based quality assessment described in Aghanim et al. (2014).
Planck Collaboration: *Addendum. Planck* catalogue of Sunyaev–Zeldovich sources

61 IPAG: Institut de Planétologie et d’Astrophysique de Grenoble, Université Joseph Fourier, Grenoble 1 / CNRS-INSU, UMR 5274, Grenoble, F-38041, France
62 ISDC Data Centre for Astrophysics, University of Geneva, ch. d’Ecogia 16, Versoix, Switzerland
63 IUCAA, Postbag 4, Ganeshkhind, Pune University Campus, Pune 411 007, India
64 Imperial College London, Astrophysics group, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, U.K.
65 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, U.S.A.
66 Institut Néel, CNRS, Université Joseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, France
67 Institut Universitaire de France, 103, bd Saint-Michel, 75005, Paris, France
68 Institut d’Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11, Bâtiment 121, Orsay, France
69 Institut d’Astrophysique de Paris, CNRS (UMR7095), 98 bis Boulevard Arago, F-75014, Paris, France
70 Institute for Space Sciences, Bucharest-Magurele, Romania
71 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan
72 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, U.K.
73 Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
74 Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife, Spain
75 Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, Santander, Spain
76 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A.
77 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
78 Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge, CB3 0HA, U.K.
79 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
80 LERMA, CNRS, Observatoire de Paris, 61 Avenue de l’Observatoire, Paris, France
81 Laboratoire AIM, IRFU/Service d’Astrophysique - CEA/DSM - CNRS - Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex, France
82 Laboratoire Traitement et Communication de l’Information, CNRS (UMR 5141) and Télécom ParisTech, 46 rue Barrault F-75634 Paris Cedex 13, France
83 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble cedex, France
84 Laboratoire de Physique Théorique, Université Paris-Sud 11 & CNRS, Bâtiment 210, 91405 Orsay, France
85 Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
86 MPA Partner Group, Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Nandan Road 80, Shanghai 200030, China
87 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
88 Max-Planck-Institut für Extraterrestrische Physik, Giesebachstraße, 85748 Garching, Germany
89 McGill Physics, Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montréal, QC, H3A 2T8, Canada
90 MilliLab, VTT Technical Research Centre of Finland, Tietotie 3, Espoo, Finland
91 Moscow Institute of Physics and Technology, Dolgoprudny, Institutsky per., 9, 141700, Russia
92 National University of Ireland, Department of Experimental Physics, Maynooth, Co. Kildare, Ireland
93 Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
94 Observational Cosmology, Mail Stop 367-17, California Institute of Technology, Pasadena, CA, 91125, U.S.A.
95 Optical Science Laboratory, University College London, Gower Street, London, U.K.
96 SB-ITP-LPPC, EPFL, CH-1015, Lausanne, Switzerland
97 SISSA, Astrophysics Sector, via Bonomea 265, 34136 Trieste, Italy
98 SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, U.K.
99 School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, U.K.
100 Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya Str, 84/32, Moscow, 117997, Russia
101 Space Sciences Laboratory, University of California, Berkeley, California, U.S.A.
102 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhniy Arkhyz, Zelenchukskiy region, Karachai-Cherkessian Republic, 369167, Russia
103 Stanford University, Dept of Physics, Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, California, U.S.A.
104 Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, U.K.
105 TÜBITAK National Observatory, Akdeniz University Campus, 07058, Antalya, Turkey
106 Theory Division, PH-TH, CERN, CH-1211, Geneva 23, Switzerland
107 UPMC Univ Paris 06, UMR7095, 98 bis Boulevard Arago, F-75014, Paris, France
108 Universität Heidelberg, Institut für Theoretische Astrophysik, Philosophenweg 12, 69120 Heidelberg, Germany
109 Universität Denis Diderot (Paris 7), 75205 Paris Cedex 13, France
110 Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4, France
111 Universities Space Research Association, Stratospheric Observatory for Infrared Astronomy, MS 232-11, Moffett Field, CA 94035, U.S.A.
112 University Observatory, Ludwig Maximilian University of Munich, Scheinerstrasse 1, 81679 Munich, Germany
113 University of Granada, Departamento de Física Teórica y del Cosmos, Facultad de Ciencias, Granada, Spain
114 Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland