Nuclear Reactions Coupled to Multi-dimensional Implicit Hydrodynamics

Philipp Edelmann
Max Planck Institute for Astrophysics (MPA), Garching, Germany

in collaboration with:
Fabian Miczek (MPA)
Friedrich Röpke, Alejandro Bolaños, Christian Klingenberg (Universität Würzburg)
Mach number $M = \frac{u}{c_{\text{sound}}}$ (low Mach number $M < 0.1$)

- stellar evolution is largely subsonic
- incompressible solution and sound waves decouple in low Mach number limit
- sound waves do not play a role in the evolution of the star
Mach number $M = \frac{u}{c_{\text{sound}}}$ (low Mach number $M < 0.1$)

▶ stellar evolution is largely subsonic
▶ incompressible solution and sound waves decouple in low Mach number limit
▶ sound waves do not play a role in the evolution of the star

situation in stellar evolution now (see also Raphael Hirschi’s talk)
▶ almost all stellar evolution simulations are performed in 1D
▶ need for modeling of intrinsically multi-dimensional phenomena (convection, shear instabilities, convective overshoot, etc.)
▶ treated using parametrized descriptions (e.g. mixing length theory)
Mach number $M = \frac{u}{c_{\text{sound}}}$ (low Mach number $M < 0.1$)

- stellar evolution is largely subsonic
- incompressible solution and sound waves decouple in low Mach number limit
- sound waves do not play a role in the evolution of the star

situation in stellar evolution now (see also Raphael Hirschi’s talk)

- almost all stellar evolution simulations are performed in 1D
- need for modeling of intrinsically multi-dimensional phenomena (convection, shear instabilities, convective overshoot, etc.)
- treated using parametrized descriptions (e.g. mixing length theory)

our aim

\Rightarrow detailed, **multi-dimensional** simulations of critical phases required
Problems in Numerical Simulations

- Analytically, the Euler equations reduce to the incompressible equations in the limit $M \rightarrow 0$.
- Standard compressible numerical schemes have a different asymptotic behavior.

Employing standard Godunov-type compressible schemes causes:
- Artificial creation of sound waves.
- Excessive dissipation of kinetic energy in the low Mach number limit.
- But, the Euler equations do not include any viscosity terms \Rightarrow ideally no dissipation.
Gresho Vortex

- rotating vortex
- dynamic pressure counteracts centrifugal force
- stationary solution to the incompressible Euler equations

Mach number
Gresho Vortex with a Standard Compressible Code

$M = 0.1$

$M = 0.01$

$M = 0.001$

(F. Miczek)

Philipp Edelmann (MPA)

Nuclear Reactions Coupled to Multi-dimensional Implicit Hydrodynamics
Approaches to Low-Mach Number Simulations

change the underlying equations

1. Boussinesq approximation
 - assume only small deviations from hydrostatic background
 - spatially constant reference density
 - only thin atmospheric layers possible (\ll pressure scale height)

2. Anelastic equations
 - time-independent, but spatially varying, hydrostatic background state
 - difficult to generalize to general equation of state and source terms
 - sound waves impossible, only valid in the low Mach number limit
Our Approach

- solve the compressible Euler equations with a Godunov-type finite volume scheme
- Roe’s approximate Riemann solver
- preconditioning matrix to ensure correct asymptotic behavior in the low Mach number limit

Advantages
- no simplifications in the basic equations
- all hydrodynamical effects modeled by the Euler equations are included
- applicable for all Mach numbers
Our Approach

- solve the compressible Euler equations with a Godunov-type finite volume scheme
- Roe’s approximate Riemann solver
- preconditioning matrix to ensure correct asymptotic behavior in the low Mach number limit

Advantages

- no simplifications in the basic equations
- all hydrodynamical effects modeled by the Euler equations are included
- applicable for all Mach numbers
LHC: Low Mach Number Hydro Code

- 1-, 2-, 3-D hydrodynamics
- implicit and explicit time stepping (up to 5\(^{th}\) order)
- 2\(^{nd}\) order spatial accuracy (no dimensional splitting)
- spatial and temporal discretization separate (method of lines)
- general structured meshes
- general equation of state
- radiation in the diffusion limit
- parallelized using MPI and/or OpenMP
- nuclear reaction network (operator-split and non-split)
Temporal Discretization

- **explicit schemes**
 - formula for the new time step can be written in an explicit form depending on information from the last time step only
 - evaluation of new time step simple and quick
 - numerical stability limits time step by CFL condition:
 \[\Delta t \leq \text{CFL} \cdot \frac{\Delta x}{c+|u|} \quad (\text{CFL} \approx 1) \]

- **implicit schemes**
 - new time step is the solution of an implicit equation
 - system of non-linear equations must be solved for every time step
 - no stability constraint
 - time step is typically chosen to resolve convective motions:
 \[\Delta t \approx \Delta x |u| \] (low Mach number case)
 - implicit time step are larger by a factor of
 \[(\Delta t)_{\text{imp}} = (\Delta t)_{\text{exp}} \approx c + |u| \approx M^{-1} \]
 - low Mach number preconditioner puts further constraints on CFL condition
Temporal Discretization

- **explicit schemes**
 - formula for the new time step can be written in an explicit form depending on information from the last time step only
 - evaluation of new time step simple and quick
 - numerical stability limits time step by CFL condition:
 \[\Delta t \leq \frac{\Delta x}{c + |u|} \text{ (CFL} \approx 1) \]

- **implicit schemes**
 - new time step is the solution of an implicit equation
 - system of non-linear equations must be solved for every time step
 - no stability constraint
 - time step is typically chosen to resolve convective motions:
 \[\Delta t \approx \frac{\Delta x}{|u|} \]
Temporal Discretization

- **explicit schemes**
 - formula for the new time step can be written in an explicit form depending on information from the last time step only
 - evaluation of new time step simple and quick
 - numerical stability limits time step by CFL condition:
 \[\Delta t \leq \text{CFL} \cdot \frac{\Delta x}{c + |u|} \]
 (CFL \approx 1)

- **implicit schemes**
 - new time step is the solution of an implicit equation
 - system of non-linear equations must be solved for every time step
 - no stability constraint
 - time step is typically chosen to resolve convective motions:
 \[\Delta t \approx \frac{\Delta x}{|u|} \]

low Mach number case

- implicit time step are larger by a factor of
 \[\frac{(\Delta t)_{\text{imp}}}{(\Delta t)_{\text{exp}}} \approx \frac{c + |u|}{|u|} \approx M^{-1} \]
- low Mach number preconditioner puts further constraints on CFL condition
Gresho Vortex (revisited)

LHC with flux preconditioning

$M = 0.1$

$M = 0.01$

$M = 0.001$

(F. Miczek)
Efficiency Compared to Explicit

- implicit time steps are much larger
- but a single step is much more expensive

Test: simulation of the vortex problem at different Mach numbers

- comparison of computational time to reach the same physical time
- 512×512 grid
- speedup increases with larger grid sizes

<table>
<thead>
<tr>
<th>M</th>
<th>10^{-1}</th>
<th>10^{-2}</th>
<th>10^{-3}</th>
<th>10^{-4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>speedup</td>
<td>0.7</td>
<td>4.0</td>
<td>39.8</td>
<td>389.5</td>
</tr>
</tbody>
</table>
nuclear reactions are a source term in the equations for conservation of species and energy
rate of change determined by rate equations (non-linear ODEs)
nuclear reactions are a source term in the equations for conservation of species and energy
rate of change determined by rate equations (non-linear ODEs)

Simplest Approach
operator splitting (alternating hydro and reaction steps)
Coupling Nuclear Reactions

- Nuclear reactions are a source term in the equations for conservation of species and energy.
- Rate of change determined by rate equations (non-linear ODEs).

Simplest Approach

- Operator splitting (alternating hydro and reaction steps).

Extensions

- Consider change of thermodynamic state during reaction step.
 Thermodynamics have to be imposed (e.g., constant ρ).
- Distribute energy release and composition change over hydro step.
Coupling Nuclear Reactions

- Nuclear reactions are a source term in the equations for conservation of species and energy.
- Rate of change determined by rate equations (non-linear ODEs).

Simplest Approach

- Operator splitting (alternating hydro and reaction steps).

Extensions

- Consider change of thermodynamic state during reaction step.
 - Thermodynamics have to be imposed (e.g. constant ρ).
- Distribute energy release and composition change over hydro step.

Non-split Calculation

- Add source terms directly to “right” side of hydro equations.
- Integration of reaction network together with the hydro equations.
Active vs. Passive Scalars

- composition is coupled to Euler equations through equation of state
- in principle: additional equation for every composition variable to be solved simultaneously with the Euler equations
- in practice: only a minor effect in many cases (e.g. ionized, ideal gas)
Active vs. Passive Scalars

- composition is coupled to Euler equations through equation of state
- in principle: additional equation for every composition variable to be solved simultaneously with the Euler equations
- in practice: only a minor effect in many cases (e.g. ionized, ideal gas)

Two Possibilities

Passive Scalars
composition is simply advected with the fluid flow
feedback with hydrodynamics only after the time step

Active Scalars
composition \((\rho X_i) \) treated as additional variables
solve the whole system simultaneously
Non-split Treatment

- involved species must be active scalars
- active scalars are very expensive → do not use more than a few
- does not resolve processes below the chosen time step but finds consistent state
- provides a benchmark of splitting errors to justify the use of operator-splitting
Implementation in LHC

- nuclear reaction network YANN originally developed by Rüdiger Pakmor for SN Ia hydro simulations
- takes arbitrary REACLIB files as input
- electron screening
- Bader–Deuflhard scheme (adaptive time step) used in the operator-split case
- exactly the same functions for computing rates and derivatives in the split and non-split case
Test Problem

- test problem from Almgren et al. (2008)
- white dwarf model atmosphere
- initial composition: 30% 12C, 70% 16O
- one reaction rate: 12C + 12C $\rightarrow ^{24}$Mg
- high temperature bubbles
Philipp Edelmann (MPA) Nuclear Reactions Coupled to Multi-dimensional Implicit Hydrodynamics
Work in Progress

no flux preconditioning

flux preconditioning

active scalars (non-split)
passive scalars (operator split)

active scalars (non-split)
Conclusions and Outlook

- conventional compressible hydro schemes exhibit unphysical behavior in the low Mach number case
- flux preconditioning can remedy this problem
- implicit time stepping in large multi-dimensional problems is efficient for low Mach numbers
- a nuclear reaction network has been integrated into the LHC
- systems of very few reaction rates can be solved in non-split fashion together with hydrodynamics
Conclusions and Outlook

- conventional compressible hydro schemes exhibit unphysical behavior in the low Mach number case
- flux preconditioning can remedy this problem
- implicit time stepping in large multi-dimensional problems is efficient for low Mach numbers
- a nuclear reaction network has been integrated into the LHC
- systems of very few reaction rates can be solved in non-split fashion together with hydrodynamics

Astrophysical Applications in multiple dimensions

- mixing in stellar interiors (e.g. convective overshoot)
- shear instabilities
- late stellar evolution phases (Si burning)
- classical novae