Outer Disks of Nearby Galaxies

Ultraviolet Insight from GALEX

David Thilker Johns Hopkins University

David Thilker Johns Hopkins

- GALEX mission specifics
- UV-traced SF reflects the presence of extended gas distributions, acquisition and removal processes, and the overall role of gas in galaxy evolution and transformation
- Highlighted results [and processes]:
 - Extended UV disk (XUV-disk) galaxies [accretion]
 - The Green Valley and early-type rejuvenation [merger]
 - On the late formation of giant LSB disks [TBD??]
 - SF intergalactic structures and tidal dwarf galaxies [collision, interaction]
 - Timing gas removal in cluster environments [stripping]

- GALEX = UV "sky survey" mission / 50 cm aperture
 - All-sky Imaging Survey (AIS), Medium Imaging Survey (MIS), Nearby Galaxy Survey (NGS), Deep Imaging Survey (DIS)
 - current "Legacy" surveys
 - formerly guest investigator program
- Two simultaneous detectors (FUV 539A, NUV 2316A)
- Imaging + grism modes
- 4 5" resolution
- I.2° diameter circular FOV

UV light / GALEX

UV light / GALEX

David Thilker Johns Hopkins

- Key advantages
 - wide-field = serendipity
 - very low sky bkgd

FUV / $24\mu m$

- high sensitivity to locales of recent SF (few 100 Myr)
- Limitations
 - modest angular resolution, brightness limit
 - potentially dust censored
 - true synergy with Spitzer and Herschel in IR

GALEX Galaxy Evolution Explorer

Discovery - Thilker et al. (2005) / Deep Image - Bigiel et al. (2010)

Extended Disk of Galaxy M83

GALEX • NUV • FUV VERY LARGE ARRAY • RADIO

David Thilker Johns Hopkins

- Long known that HI disks are larger than optical extent, but such extensive SF was a surprise
 - Early VLA and WSRT maps -- now THINGS / LVHIS
 - Deep census: HALOGAS, soon MHONGOOSE
- Next generation all-sky HI surveys = unbiased picture
 - ASKAP (WALLABY) and WSRT (WNHS)
- GALEX already provides a view of associated SF activity
 - Gas consumption, enrichment + improved SFL
 - Follow-up optical spec. of youngest reg. to pin down metallicity
 - GALEX can also supply QSO sightlines for absorption spec.

- Extended UV disk (XUV-disk) galaxies
 - Outer disk, low density star formation within HI reservoir
 - Highly structured distribution of UV-bright clumps
 - Spatial correlation on kpc scales between HI and UV
 - Azimuthally averaged Σ_{SFR} < 10⁻⁴ M_☉ / yr / kpc² but bright exceptions
 - Limited HII reg. originally seen in H α by Ferguson et al. (1998)
 - XUV portion = few to 50+% of $L_{UV, tot}$ = diverse morphology
 - XUV features evidently commonplace, but when to call it ...
 - Significant? (only if morphologically transformative?)
 - Outer? (past stellar body or main area of SF?)

UV light / GALEX

UV light / GALEX

UV light / GALEX

UV light / GALEX

UV light / GALEX

UV light / GALEX

UV light / GALEX

David Thilker Johns Hopkins

- Thilker et al. '07 published classification scheme based on ~200 galaxies drawn from the GALEX Atlas (Gil de Paz et al. '07).
 - Two (non-exclusive) morphological types ... NEXT SLIDE
 - 30% overall XUV-disk incidence at z = 0
 - Type I is twice as common as Type 2
 - Disk sparseness and imaging depth influence detection efficiency (eg. NGC 2915)
 - Zaritsky & Christlein (2007) independently derived similar incidence based on a smaller sample, but our survey provided the first large set of objects for detailed study.

- Type I -- Sparse, structured UV past expected SF threshold
- Type 2 -- Widespread, blue LSB zone inside threshold but beyond 80% of stellar mass

David Thilker Johns Hopkins

40 Type 2 UGC 04390 Type 2 Expected locus for XUV-disks linear inside-out growth 30 T ≤ 2 2 <T ≤ 5 ---T>5 ESO 556-012 Type 1 NGC 7418A Type 2 20 ESO 317-023 10 0 -2 0 6 8 UV(AB) - K(AB)

Galaxy Evolution Explorer

GALE

Kloster Seeon

15 Jun 2011

- Type I -- Sparse, structured UV past expected SF threshold
- Type 2 -- Widespread, blue LSB zone inside threshold but beyond 80% of stellar mass

David Thilker Johns Hopkins

- Thilker et al. '07 published classification scheme based on ~200 galaxies drawn from the GALEX Atlas (Gil de Paz et al. '07).
 - Two (non-exclusive) morphological types
 - 30% overall XUV-disk incidence at z = 0
 - Type I is twice as common as Type 2
 - Disk sparseness and imaging depth influence detection efficiency (eg. NGC 2915)
 - Zaritsky & Christlein (2007) independently derived similar incidence based on a smaller sample, but our survey provided the first substantial set of objects for detailed study.

David Thilker Johns Hopkins Galaxy Evolution Explorer

Kloster Seeon 15 Jun 2011

Type I seen in all galaxy disks. Type 2 prefer late-type disks.

GALE

- Mergers unlikely the source of all the extended star-forming gas, though perturbation may stimulate SF (75% of XUV Type I have LSB companions or HVCs.)
 - IGM accretion is viable source

David Thilker Johns Hopkins

GALEX Galaxy Evolution Explorer

- High specific SFR in Type 2 doubling of stellar mass in < I Gyr</p>
- XUV-disks are 2x more gas rich than non-XUV counterparts at fixed L_K or fixed SFR

David Thilker Johns Hopkins

GALEX Galaxy Evolution Explorer

Kloster Seeon 15 Jun 2011

Roškar et al. (2010)

- Fully cosmological simulation in which a warped, misaligned outer disk is formed via IGM accretion through hot halo
- SFR and metallicity tracked separately in main disk and outer area

Figure 11. Mass-weighted metallicity distribution function for the st

David Thilker Johns Hopkins

- Bigiel et al. (2010)
 composite SFL
- GALEX FUV + Spitzer 24μm
- vs. HI + CO (H₂)
- Total gas SFE is 30x lower in Type 1 XUV-disks compared to high density environments
 - Formation of molecular gas is rate limiting process (eg. Schruba et al. 2011)
- Possible change in IMF, cluster/association demographics?

- IMPROVED XUV-SURVEY UNDERWAY
 - Oramatically more GALEX data are now available!
 - Include AIS and new sky coverage at MIS-depth.
 - Previous survey limited to disk-like "host" galaxies
- Thilker et al. (2011, in prep) analyzes a sample of 3000+ nearby galaxies, selecting XUV-disks following T07 rules
 - Deep multi-wavelength follow-up for best examples
 - Several surprises already
- SEE ALSO Lemonias et al. (2011) GALEX DIS XUV-disks

David Thilker Johns Hopkins

Complicated relation with optical SB profiles

GALE

- Bakos et al. (2010)
- Following Pohlen,
 Erwin, & Trujillo
- Radial migration of stars into outer disk + in-situ SF determines profile shape / color
- Type III showing long-term effect of XUV SF?
- Z. Zheng, Pan-STARRS I dissertation project -correlation of optical + UV disk type

Galaxy Evolution Explore

David Thilker Johns Hopkins

GALEX Galaxy Evolution Explorer

- Baldry et al. '04
- Galaxies migrate from blue to red sequence
- Wyder,
 Schiminovich,
 Martin papers in
 2007 GALEX
 ApJS issue
- Green valley galaxies are likely transition objects

David Thilker Johns Hopkins

- NGC 404
- Nearby, low mass S0
 - M∗ = 7e8 M_☉
 - $M_{HI} = 1.5e8 M_{\odot}$
- Isolated ...now
- No other galaxy within
 I.I Mpc radius
- Group remnant? (Karachentsev et al. 2002)

David Thilker Johns Hopkins

GALEX Galaxy Evolution Explorer

- NGC 404: nearby ETG galaxy w/ XUV-disk
 - Merger origin for HI ring (del Rio et al. '04)
- First such merger?
 - Maybe the S0 disk formed this way...
- Is this event transformational?
 - Available HI gas could augment stellar mass by 20% if all converted
 - More important-- change in B/D ratio?

Thilker et al. (2010)

David Thilker Johns Hopkins

Kloster Seeon

- NGC 404: nearby ETG galaxy w/ XUV-disk
 - $\Sigma_{SFR} = 2 \times 10^{-5} \, M_{\odot}/yr/kpc^2$
 - SFR = 0.0025 M_{\odot}/yr
 - 70% from XUV-disk despite low $\Sigma(SFR)$

GALE

- $\tau_{dep} \sim 60$ Gyr, equiv. SFE_{HI} = 2×10⁻¹¹ yr⁻¹
- non-transformational -- but the potential is there if stimulated
- UV color gradient due to underlying S0 disk
 - Outer color agrees with merger dating

Galaxy Evolution Explorer

Thilker et al. (2010)

David Thilker Johns Hopkins

- Inferred motion in the UV-opt galaxy CMD
- CMD from Wyder et al. '07
- Thilker et al. (2010) show that the presence of the SF ring changes the position of the galaxy (red seq. to green valley)

Without SF ring / "before" Including SF ring / "after"

UV light / GALEX

See also, Bettoni et al. (2010)

David Thilker Johns Hopkins

GALEX Galaxy Evolution Explorer

Kloster Seeon 15 Jun 2011

- GV is partially two-way!
- Mixed mergers in RS, or other accretion mechanism, are responsible

Werk et al. '09 HI arc = early-stage remnant?

 see also: Cortese & Hughes '09, Kannappan et al. '09 (BS ETGs), Moffet et al. '10, Zernow et al. 2010

- Barth (2007): HST shows Malin I has a typical HSB S0 disk within separate LSB outer component.
- Massive LSBs are likely extreme XUV-disks with anomalously high M(HI) obtained somewhow.

- Two-stage formation scenario likely for at least some mLSBs
- First make "host" object through typical process
 - (a) HSB disk + bulge, or... (b) red/dead early-type
- An ordinary host later acquires <u>much</u> more gas, enabling it to build the (a) hybrid disk or (b) singular LSB component
 - similar to Type 2 XUV-disk gas budget
- High angular momentum accretion required to retain gas at large radii, not consumed in a quick burst of SF

David Thilker Johns Hopkins

- Massive LSB disk galaxies forming about E or S0 hosts.
- Offshoot of XUV survey, increased dist. limit to examine early types in which log M(HI)>10.
- Found several with XUV-disks of diameter 100-150 kpc

David Thilker Johns Hopkins

Kloster Seeon 15 Jun 2011

UGC 1382

• UGC 1382

- Elliptical host
 (T = -5) with
 $M_* = 4 \times 10^{10} M_{\odot}$
- Gas frac. ~ 0.5
- Spiral structure

David Thilker Johns Hopkins

DSS2

Kloster Seeon 15 Jun 2011

UGC 3642 0

- S0 host (T = -2) $M_* = 7 \times 10^{10} M_{\odot}$
- Opt. brighter, 0 more evolved?
- Counter-rot. HI 0 evidence for late assembly

HI from WHISP

- NEW HI SURVEYS WILL FIND MUCH MORE CIRCUMGALACTIC & INTERGALACTIC GAS
 - Possible accreting clouds, collisional rings, TDGs
 - GALEX can find them now
- ${\ensuremath{\,^{o}}}$ In the low SFR regime, UV is a more reliable tracer than H α or IR regardless of IMF
 - stochastic limits: $\log(SFR) = -3.5$ for H α , -5 for UV
- What SF might we be missing in H α surveys?
 - Iltra-faint dwarf galaxies
 - intragalactic debris

David Thilker Johns Hopkins

- The Leo Ring (Thilker et al. '09)
- Putative fossil intragroup structure contains 2x10⁹ M_☉ of HI
- Several sites of intergalactic SF found with GALEX

David Thilker Johns Hopkins

- UV-opt color-color ages
- ${\ensuremath{\, o}}$ SFR < 0.001 $M_{\odot}~yr^{-1}$
- Leo Ring Clumps lack DM (Schneider et al. 1989)
- Objects similar to TDGs
 - Metallicity TBD w/ HST

David Thilker Johns Hopkins

Kloster Seeon 15 Jun 2011

Collisional model

- If verified as true origin, then possibly the oldest known collisional ring
- Do any faint dwarfs survive from prior SF events?
 - Perhaps a better chance than traditional TDGs
- Probe of group "pollution" mechanism
 - stars and enriched gas
 - ring remains distinct

David Thilker Johns Hopkins

- NGC 5291's collisional ring (Boquein et al. '07 & Bournaud et al. '07)
- Another example: NGC 2292/93 (LGG 138) ring
- GALEX is ideal for finding such SF sites, and following evolution of displaced gas
- Classical TDGs also...

David Thilker Johns Hopkins Kloster Seeon 15 Jun 2011

In-situ SF within ram-press. stripped gas

GALE

Hester et al. 2010 (IC3418,Virgo Cluster) XUV-disk NGC 4254 is similar Smith et al. 10 (UV tails in Coma)

Use UV-opt SED as a timer since RP...

Galaxy Evolution Explorer

David Thilker Johns Hopkins

CONCLUSIONS:

- XUV-disks are common and trace ongoing inside-out disk formation
- The Green Valley galaxy pop. is diverse, including rejuvenated SF ETGs
- At least some massive LSB disk galaxies may have formed in two stages
- GALEX provides an ideal way to search for TDGs and intergalactic SF
- Timing gas removal in cluster environ. is feasible with UV-opt SED

 GALEX, the Galaxy Evolution Explorer, has lived up to its name - highlighting disk building and morphological transformation processes, while allowing the study of rate limiting factors inherent to the resolved SFL.