

The GALEX Arecibo SDSS Survey (GASS)

D. Schiminovich (Columbia University) and GASS team

The Milky Way (triptych) Yayoi Kusama

GASS: The cold gas content of massive galaxies $\log M_{\star} \ge 10$

- HI survey of ~1000 galaxies selected from SDSS main galaxy sample
- Redshift range: 0.025<z<0.05 (110-220 Mpc)
- Footprint: Overlap of ALFALFA HI survey, SDSS (sp), and GALEX
- Depth: HI mass fraction limit fgas>0.02 (typ. log M_{HI}>8.5-9)
- Arecibo large program (~1000 hours), initial observations in 2008.
- Public Release: DRI w/ 20-25% of survey (Catinella et al. 2010)

First statistically significant sample of massive "transitional" galaxies with homogeneously measured stellar masses, SFR and gas properties.

- "Sweet spot" in terms of taking full advantage of data from on-going wide field surveys (e.g. SDSS, GALEX, <u>WISE</u>)
- Complementary to Arecibo blind, large area surveys (ALFALFA, AGES); useful for planning future deep EVLA and pathfinder HI surveys

Barbara Sean Catinella Moran

Arecibo control room

GASS Team

DS, Catinella, Kauffmann, Heckman, et al.

+ Jing Wang, Andrew Cooper

Silvia Fabello Ronin Wu

in Jenna 1 Lemonias Cameron Hummels

GASS Team

Name	Affiliation	Specific tasks
D. Schiminovich	Columbia	Principal Investigator. Survey management, observing, HI follow-up
M. Blanton	NYU	HI follow-up, complementary analysis (SDSS, local samples)
J. Brinchmann	Leiden	SDSS corollary analysis, spectroscopy follow-up
T. Budavari	JHU	Archiving, SDSS and GALEX corollary analysis
B. Catinella	MPA	Observing and data analysis lead, web dev., ALFALFA, HI follow-up
S. Fabello [*]	MPA	Observing and data analysis, ALFALFA data stacking
R. Genzel	MPE	CO follow-up
R. Giovanelli	Cornell	Coordination with ALFALFA, adaptation of ALFALFA software
J. Gracia-Carpio	MPE	CO follow-up
T. Goncalves [*]	CIT	GALEX corollary analysis
M. P. Haynes	Cornell	Coordination with ALFALFA, NVO data access
T. Heckman	JHU	SDSS and GALEX corollary analysis
D. Hogg	NYU	SDSS corollary analysis
C. Hummels [*]	Columbia	Observing
B. Johnson	Cambridge	GALEX corollary analysis
G. Kauffmann	MPA	Theory, SDSS corollary analysis
R. Kennicutt	Cambridge	Complementary analysis (local comparison samples)
J. Lemonias [*]	Columbia	Observing, HI follow-up, GALEX corollary analysis
C. Li	MPA	Corollary analysis, theory
B. Madore	OCIW	Corollary analysis
C. Martin	CIT	GALEX corollary analysis, spectroscopy follow-up
S. Moran	JHU	Observing, spectroscopy follow-up
R. Overzier	MPA	GALEX corollary analysis
M. Rich	UCLA	GALEX corollary analysis, spectroscopy follow-up
A. Saintonge	MPE/MPA	CO follow-up
L. Tacconi	MPE	CO follow-up
D. Thilker	JHU	HI follow-up, complementary analysis (GALEX, local samples)
L. Vican ^{**}	Columbia	HI follow-up, GALEX corollary analysis
J. Wang*	MPA	GALEX corollary analysis
V. Wild	MPA	Theory, spectroscopy follow-up
R. Wu*	NYU	Observing, GALEX corollary analysis
T. Wyder	CIT	Complementary analysis (GALEX, local comparison samples)

GASS Current Status

- Goal: ~1000 galaxies, including 20% from ALFALFA, existing HI archives.
- Observations on-going (~250 hours/year)
- ~70% complete (75% by mid-September).
- Final observing season Winter/Spring 2011-2012
- Next data release: 50% of data have been fully reduced.
 DR2 release in coming months (480 galaxies)
- First results in several papers last year: Catinella et al.; DS et al.; Moran et al.; Wang et al.; Fabello et al. (2010)

These and new results in this session + Kauffmann after lunch Saintonge (Thursday) and Lemonias (poster)

GASS is unlike most typical surveys: HI mass fraction limit

GASS is unlike most typical surveys: HI mass fraction limit

GASS is unlike most typical surveys: HI mass fraction limit

GASS <u>detects</u> HI in most massive galaxies

GASS selection enables measurement of HI distribution functions

Cumulative HI mass density

$$\rho_{HI}(\log M_{\star} > 10) = \int_{10^{10}}^{\infty} \int_{0}^{\infty} M_{HI} \phi(M_{HI}, M_{\star}) dM_{HI} dM_{\star}$$

.... and ~50% of total SFR density

GASS selection enables measurement of HI distribution functions

Bivariate distribution function

$$\phi(M_{HI},M_{\star})$$

with simple ML fit: Schechter (M_*) x lognormal (M_{HI})

see Lemonias poster, this meeting

Gas and SFR scaling relations

Gas and SFR scaling relations

Mutch et al. (2011)

GASS Corollary Projects

vel, 2, v, channels

RA - 2.4

Long slit spectroscopy (ionized gas. metallicities) ~300 galaxies (Moran, Heckman et al.)

HST Large Program - Cosmic Origins Spectrograph Cycle 19 - 52 galaxies (Heckman et al.)

