Feedback in Galaxy Formation

Elizabeth Harper-Clark, Mubdi Rahman, Brice Mènard, Eve Lee, Eliot Quataert, Phil Hopkins, Todd Thompson

Important Questions

- Do baryons follow dark matter into halos?
- If so, how do they get out again?
- While they are there, why do they take so long to turn into stars?

Outline

- What is meant by "feedback"
- Address two astronomical questions
 - limiting the rate of star formation
 - ejecting baryons
- How does momentum feedback work?
- Starburst Winds
- Quasar mode feedback

Feedback: all things to all people

- Cluster modellers: (AGN) suppressing cooling flows
- Galaxy modellers: (AGN) quenching in massive galaxy halos
- Galaxy modellers: setting the black hole mass---galactic velocity (M-σ) relation
- Galaxy modellers: (stars/AGN) Removing unwanted baryons from dark matter halos
- Extra-galactic observers: (stars/SN) driving outflows (blue shifted absorption lines)
- Star formation: (protostellar jets, SN, HII, radiation) limiting the rate of star formation (Kennicutt)
- ISM: (SN, radiation) generating turbulence

Feedback from a physicist's point of view

- Energy: deposit energy into the ISM, heating it.
 - the resulting overpressure can push the surrounding ISM around, resulting in turbulence, or ejection of hot gas
 - sources: HII regions, stellar winds, SN, cosmic rays, AGN winds (BALs, Narrow line outflows), AGN radiative heating(X-rays), and AGN jets
 - Subject to radiative losses---not relevant in MW, but in ULIRGs and SMGs this is a major problem
- Momentum: deposit momentum into the ISM, pushing it around
 - sources: HII regions, radiation pressure, BAL winds, cosmic rays
 - not subject to radiative cooling

Limiting the rate of star formation: How to halt GMC collapse?

- Magnetic pressure
- cosmic ray pressure
- thermal gas pressure
 - Stellar winds
 - HII gas
 - SN
- Radiation pressure
- turbulent pressure

So many pressures, so little time

- Extreme cases are instructive
- Arp 220
- $n = 2x10^4 \text{ cm}^{-3};$
- $P_{dyn} \approx G\Sigma^2 \approx 3x10^{-6} erg \ cm^{-3}$
- $P_{turb} = Qv_T^2$; $v_T \approx 85 km s^{-1} P_{turb} \approx 3x10^{-6} erg$ cm^{-3}

• $L = 4x10^{45} \, erg/s$

So many pressures, so little time

- Supernovae---we see 4/yr in Arp 220!
- All have r<0.4pc (consistent with pressure confinement)
- $L_{SN} = 4x10^{51} erg/3.15x10^7 s \approx 10^{44} erg/s$
- $P_{hot} = P_{dyn}; n_h = P_{dyn}/kT$
- $L_{cool} = \Lambda n_h^2 V f_h \approx 10^{46} erg/s$
- Conclusion: SN cannot stir up the ISM

Londale ApJ 647 185; Parra 659 314

Monday, July 11, 2011

So many pressures, so little time

- Supernovae---we see 4/yr in Arp 220!
- All have r<0.4pc (consistent with pressure confinement)
- $L_{SN} = 4x10^{51} erg/3.15x10^7 s \approx 10^{44} erg/s$
- $P_{hot} = P_{dyn}; n_h = P_{dyn}/kT$
- $L_{cool} = \Lambda n_h^2 V f_h \approx 10^{46} erg/s$
- Conclusion: SN cannot stir up the ISM

Radiative Feedback in the Milky Way

Star Formation Efficiency per GMC

• $L/c = GMM/R^2$ (Force balance) • $\varepsilon_{GMC} = M*/M = \pi Gc/(2L/M*) \Sigma_{GMC}$

 $\approx \Sigma_{GMC} / (gm \ cm^{-2})$

• Milky Way GMCs have $\Sigma_{GMC} \approx 0.05$

Blowing up GMCs in color 3D

Harper-Clark; ENZO2 raytracing

Monday, July 11, 2011

Stellar mass vs time for different feedbacks

 $\varepsilon_{GMC} \approx 0.1$

Stellar mass vs time for different feedbacks

 $\varepsilon_{GMC} \approx 0.1$

Testing the model: measure EGMC

WMAP Free-Free emission

Monday, July 11, 2011

Radiation pressure on dust

Murray & Rahaman 2010 ApJ 709 424; Rahman & Murray ApJ 719 1104

Generating Turbulence

- Supersonic turbulence is universal in the ISM
- Turbulence decays: $L_T \sim \pi R^2 \rho v_T^3 \sim 3x 10^{39} erg/s$
- Adding up the the bubbles associated with 0.8 of the star formation, we find L~2.4x10³⁹ erg/s

Galactic scale simulations Hopkins, Quataert Gadget (sph)

Figure 1. Images of the gas distribution for our fiducial simulations ($\eta_p = \eta_v = 1$) in the feedback-regulated quasi steady-state. Brightness shows the gas surface density while color shows the specific SFR (increasing from blue to red); both are on a logarithmic scale spanning a dynamic range of ~ 10⁶. *Top:* Large scales out to twice the half-gas mass radius. *Middle:* Intermediate scales out to the half-SFR radius. *Bottom:* Edge-on; scale is same as the middle image. One example is shown for each of the initial conditions we model (HiZ_10_4_hr, Sbc_10_4_hr, MW_10_4_hr, and SMC_10_4_hr in Table 2). The simulations develop complex substructure and exhibit a diverse range of gas morphologies. Most stars are formed in dense but resolved giant 'molecular' cloud complexes, which are the sites of feedback as modeled here.

Modified Gadget simulations

- Particle mass from 100 solar masses
- force resolution ~ few parsecs or better
- several different types of galaxy
- no radiative transfer---instead deposit momentum from stars directly in gas
 - treat stars as being located in a single cluster near the center of their host GMCs
 - track L(t) for each star
 - calculate optical depth from location of cluster

Momentum Feedback regulates star formation

Global star formation rate does not depend on small scale star formation rate

Varying strength of the feedback does not change SFR, but it does change the density distribtuion

Different forms of feedback

Missing Baryons

- To cosmologists, a galaxy is a gravitationally bound collection of dark matter they call a 'halo'
- The baryons are incidental, more of a bother than anything else: they don't stay where they belong, inside the halo

Monday, July 11, 2011

Galactic Winds

Rubin et al. ApJ 728 55 (2011)

Monday, July 11, 2011

Launching Winds from Massive Star Clusters

- Cluster mass scales with star formation rate
- Massive clusters have high escape velocities---they can radiatively launch winds that escape the galactic disk
- This happens before SN explode, protecting the 'cool' (10⁴) gas
- EGMC as in bubble models; more gas leaves the galaxy than is retained in stars
- Cool gas survives to large distances (5-10kpc) where hot gas ram pressure takes over

NGC 3310

SCHWARTZ ET AL. (2006) APJ 646 858

1 kpc

Monday, July 11, 2011

SCHWARTZ ET AL. (2006) APJ 646 858

Monday, July 11, 2011

1D Numerical Models

Murray Menard & Thompson. arXiv:1005.4419

3D Models

3-DWind Models

3-D Gadget Models

Quasar Mode Feedback

- Jets; can push gas, but very narrow
 Energy deposition by UV/X-rays, but radiated away unless L>L_{cool}
- radiation pressure, but galactic disks are thin
- BAL winds

Quasar Mode Feedback: Energy

- Plenty of energy to disrupt the gas, but the difficulty is depositing it into the ISM
- $E_{binding} = M_g v_c^2 = 10^{58} erg$
- $L \tau_{dyn} = 10^{46} erg \, s^{-1} \, x \, 10^{15} s = 10^{61} erg$
- But, as usual, the ISM will radiate away the energy as fast as it is put in

Quasar Mode Feedback---BAL Winds

- $\circ \quad L = \eta dM_{acc}/dt \ c^2$
- $\circ \quad L_w = (1/2) dM_w/dt \ v_w^2$

• line driven winds: $dM_w/dt v_w \leq L/c$

 $\circ \quad dM_w/dt \leq \eta(c/v_w) \, dM_{acc}/dt$

- $L_w = (1/2) dM_w/dt v_w^2 = (1/2)(v_w/c) L << L$
- Dunn et al. ApJ 709 611 estimate $dM_w/dt \sim Lc/v_w$
- Using this as a bomb would work, but it is hard to confine a shocked wind, since the galaxy is not spherical
- Momentum flux is ≤L/c, which is what radiation pressure acting directly on the ISM gives.

Quasar Mode Feedback

- Momentum driving: $dM/dt \le L/(cv_c) \approx 200 \Omega_{disk}$ solar masses per year
- Since $H/R = \sigma/v_c \approx 1/4$, $\approx 50 M_{sun} yr^{-1}$
- Compare to 100-1000 M_{sun} yr⁻¹; endgame only
- But, if you settle for less mass loss, can drive gas to v≥ 1000km/s, which is difficult to do with stars

Conclusions

- Radiative feedback is seen to act in the Milky Way (bubbles)
- It supplies a turbulent luminosity comparable to that dissipated in the Milky Way, and may maintain Q=1
- Simple models, 3-D radiative MHD, and high resolution 3-D hydro calculations suggest radiation pressure is important in limiting the rate of star formation in all disk galaxies
- It looks promising as a way launching galactic winds and removing baryons from L* galaxy halos, and aids SN in low mass halos
- Quasar mode feedback lacks a compelling physical mechanism for removing gas from the ISM during the peak of a starburst: it may supply the coup de grace at the end of a merger.