'The Magellan/MagE Survey 'for Molecular Hydrogen in High Redshift Galaxies

Regina A. Jorgenson Institute of Astronomy, Cambridge

In collaboration with: Michael Murphy (Swinburne) Bob Carswell (IoA, Cambridge) Rodger Thompson (SO, Arizona)

Typical Quasar Spectrum

DLA - Star Formation Connection?

- Stars form out of neutral, not ionized, gas
 - By definition, DLA gas is primarily neutral (N(HI) > $2 \times 10^{20} \text{ cm}^{-2}$)
- DLA metalicities are generally [M/H] > -2.6, typically 1/30th solar
 - well above the IGM
 - Implies either *in situ* star formation or enrichment from earlier generations of stars
- [M/H] increases with cosmological time
- CII* λ 1335.7 absorption implies SF
 - (Wolfe et al. 2003a & b)

Key Question

- So there is evidence of star formation in DLAs, but where is the gas that is actually turning into stars?
- Star formation requires H₂, so...

Star Formation follows H₂

Wong & Blitz 2002

Synthetic H₂ Spectrum

Synthetic H₂ + forest spectrum

Surveys for H₂ in DLAs

H₂ detected by Levshakov and Varshalovich (1985)

Surveys for H₂ in DLAs

H₂ detected by Levshakov and Varshalovich (1985)

Ledoux et al. (2003) 33 mainly archival VLT/UVES spectra 13 - 20% detection rate

Noterdaeme et al. (2008)

77 mainly archival spectra 10 - 16% detection rate molecular fractions of log $f = -1 \implies -6$

BUT....strong biases exist:

- -- bright quasars selected for hi-res spectroscopy
- -- strong metal-absorption selection in the archive
- -- mainly high N(HI) systems targeted

Surveys for H₂ in DLAs

The Unbiased Magellan/MagE H₂ Survey

- MagE spectrograph is ideal for this survey
 - R ~ 4000 (~ 71 km/s)
 - Very UV sensitive

- ~ 100 *z* ≥ 2.2 DLAs
 - $-\delta \le 15 \text{ deg}$
 - i ≤ 19.0 mag

The Unbiased Magellan Survey

Survey Status

- 8 Magellan/MagE nights
 - Only ~ 70% useful due to weather
 - Some follow-up done w X-Shooter
- Final Sample: 110 DLAs
 - 96 DLAs observed (including archival data & X-Shooter data)
 - 9 missed because of bad weather
 - 5 more in archive
- No strong, obvious H₂ absorbers found!
 - 1 strong absorber already studied (UVES, Noterdaeme et al., 2007) was in sample
 - Based on past (biased) surveys with ~10% detection rate we would have expected several
 - Noterdaeme et al. (2008): 9/77 w log N(H₂) >17.5 and log f _{H2} > -2.8
- Indicates low H₂ incidence and low H₂ covering fraction

Possible weak H₂ absorbers

 $N(H_2)^{total} \sim < 10^{17} \text{ cm}^{-2}$ log f ~ < -3

Proof that we <u>can</u> detect H₂

☆ Foltz et al. (1988) H₂ discovery spectrum with 1 Angstrom resolution (thin line) and H2 template (thick line).

☆ Our Magellan/MagE control spectrum of the Foltz object, taken 2009 (thin line) and H2 template (thick line).

Survey Status

Measuring $N(H_2)$ upper limits in DLAs

- Use routine in RDGEN package
 - <u>www.ast.cam.ac.uk/~rfc/rdgen.htm</u> (Bob Carswell)
- Given z_{abs} and b (Doppler parameter), create a grid of Voigt profiles convolved with instrumental profile
- Each line is compared w data and χ^2 determined for pixels where Voigt profile is below the data
 - If not the case, the column density is increased
- This yields the highest possible column density even in the presence of blends because it is only those pixels where the fit violates the data that contribute

Measuring $N(H_2)$ upper limits in DLAs

Measuring $N(H_2)$ upper limits in DLAs

N(H₂) upper limits in DLAs

Molecular fraction = $f = 2N(H_2)/(2N(H_2) + N(H_I))$

N(H₂) upper limits in DLAs

N(H₂) upper limits in DLAs

Summary

- 96 DLAs reveal very little H₂:
 - 1 (already known) detection out of 96
 - Covering factor:
 - For log N(H₂) >17.5 cm⁻² and log f $_{H2}$ > -2.8 :
 - Noterdaeme et al. (2008): 9/77 ~ 12%
 - Unbiased MagE sample: 1/96 ~ 1%

• Upper limits on Molecular Fraction:

(depends on assumed Doppler parameter)

- Median for b = 12 km/s:
- Median for b = 1 km/s:
- Median of H₂ detections from UVES sample: $f_{H2} < 2.5 \times 10^{-3}$

 $f_{H2} < 4.2 \times 10^{-7}$ $f_{H2} < 1.2 \times 10^{-4}$ $f_{H2} < 2.5 \times 10^{-3}$

Conclusions

- DLAs offer non-luminosity biased probes of high redshift galaxies and gas star formation connection
- DLA star formation connection not well understood
- H₂ incidence and covering fraction is one unknown aspect
- Blind, unbiased MagE survey reveals that covering factor and fraction of H₂ in DLAs is much lower than previously thought