

Populations in A Accretion as Traced by Stellar Streams Kathryn V. Johnston

(Columbia University)

Gas in Galaxies, 2011

Stellar halo models created with semi-numeric approach (Bullock & Johnston, 2005; Robertson et al 2005; Font et al 2006)

- N-body simulations of accreting dark matter halos from cosmological history
- painted with stars
- associated SF history and leaky-accreting chemical enrichment model

Overview of the overview

- Context
 - galaxy formation from nearby objects
 - following gas history star-by-star
- Application: stellar populations as tracers of
 - gas processes
 - accretion
- Future prospects

Context I:

Galaxy formation from nearby galaxies

Timescales ⇔ When?

<u>DM Halos ⇔What?</u>

Context I:

Galaxy formation from nearby galaxies

• Variety in histories imposed by hierarchy:

	Timescale	DM halo	Environment
Stellar halo	short	large	more dense
Streams	longer	large	less dense
Satellites	longest	small	less dense

laboratory for gas processes that make galaxies

Context II:

Gas history star-by-star

Accreted gas

Accreted stars

- in halos and along filaments
- forms *in situ* stellar population
- dominate the disk

- in halos
- forms accreted stellar population
- dominate the stellar halo

Gas forgets but stars remember!

phase-space structure ⇔ halo in which born chemical abundances ⇔ birth-cloud and prior processing

Stellar Populations I: Gas History

- chemical abundances ⇔ birth-cloud + prior processing
- local objects ⇔ variety of histories

Stellar Populations I: Gas History

- abundances ⇔ birth-cloud + prior processing
- local objects ⇔ variety of histories

	Timescale	DM halo	Environment
Stellar halo	short	large	more dense
Streams	longer	large	less dense
Satellites	longest	small	less dense

<u>Chemical abundance patterns from</u> <u>hierarchical structure formation + gas processing</u>

[Fe/H]

e.g. satellites vs streams vs stellar halo

- Mass ⇔ brightest streams – metal-rich (Gilbert et al 2009)
- Timescale ⇔ streams/satellites – alpha-poor (Font et al 2008)
- Mass/timescale ⇔ ir, situ halo stars – metal-rich and alpharich (Zolotov et al 2010, see also Font et al 2010)

Observations: stream-stream variations

- M31
 - Photometry (PANDAs)
 - Spectroscopy (SPLASH)
- Milky Way (SDSS)
 - Photometry: ratio of BHB/ MSTO stars (Bell et al 2010)
 - Spectroscopy: ECHO's
 (Schlaufman et al, 2010)

Variations in history 🗇 differences

- stream ~ stream
- satellite ~ stream ~ halo
 - accreted ~ *in situ* stars

Stellar Populations II: Accretion History Act. %_{lum} 60.02 (~ "chemical tagging", Freeman & Bland-Hawthorn) (see also: Unavane et al 1996; Prantzos 2008) 32.60 high mass, all masses, time early accretors all accretors [alpha/ Fe] 2.148 high mass, low-mass, late accretors late accretors 5 -3 [Fe/H] mass

The idea..

- 1. f= observed distribution
- 2. f_i = template distributions for different (M_* , t_{acc}) bins
- 3. find A_i such that

 $f = \Sigma_i A_i f_i$

A_i = fraction of stars accreted in each (M_{*}, t_{acc}) bin = <u>accretion history!</u>

Testing the idea...

Duane Lee, Johnston, Jessop, Sen, 2011, in prep $f = \Sigma_i A_i f_i$

- f = "observations" of 11 model stellar halos
- $f_i = 5x5$ grid of (M_*, t_{acc}) bins of all satellites
- Statistical approach

– Define likelihood:

$$L(\mathbf{A}) = \prod_{j=1}^{n} f(x_j, y_j) = \prod_{j=1}^{n} \sum_{i=1}^{m} A_i f_i(x_j, y_j)$$
$$x_j = [Fe/H], \quad y_j = [\alpha/Fe]$$

- Use expectation-maximization technique to find A_i

Results I: projected accretion histories

Results II: Full 2-D Accretion History

Abundances indicate:

- low mass end of
- luminosity function
- early accretion epoch

<u>Future Prospects for Populations:</u> <u>more data in more dimensions</u>

- High-resolution, multi-fiber spectroscopy:
 - APOGEE (SDSS), 2011, IR, 15
 elements for 10⁵ stars (R~20,000 to H=12.5)
 - Hermes (AAT), 2012, optical, Fe
 alpha, r-, s-process, 10⁶ stars

Source	elements	Timescale	Energy- scale
SN la	Fe, alpha	~0.1-3 Gyr	explosive
SN II	alpha, Fe, r-process	~10-30 Myr	explosive
AGB	s-process	~0.1-3 Gyr	winds

+ observed
abundance *distributions*+ hierarchical
structure formation
➢ gas processing

Future Prospects for Populations: low-Fe stars and MW progenitors

Future Prospects for Populations: low-Fe stars and MW progenitors

 e.g. neutron-capture elements at low metallicity compilation by Frebel (2010): black = halo stars; green = stars in ultra-faint dwarfs

Interpretation: Frebel & Bromm (2010); <u>Lee</u>, Johnston, Simon & Sen (2011), *in prep*

<u>Summary</u>

- Chemical abundance distributions of stars in our own and nearby galaxies tell us something about:
 - gas processing
 - accretion
 - today and in early Universe.

Summary

- Local stars ⇔ tracers of galaxy formation
- Futures directions
 - More data and more dimensions
 - Abundance distributions tracing
 - Accretion back to earlier times and low luminosity objects
 - Gas processing in early Universe

Observations: stream-stream variations

- M31 (PANDAs survey)
- Milky Way (SDSS)
 - Photometry: ratio of BHB/
 MSTO stars (Bell et al 2010)
 - Spectroscopy: ECHO's
 (Schlaufman et al, 2010)

Variations in history ⇔stream-stream differences ⇔ satellite/stream/halo differences

Tracing accretion with..... ...alpha-element abundances

conserved
 indefinitely

... surfacebrightnessfades due tophase-mixing

• see Sharma et al (2010)

- ... phase-space structure
- conserved in the absence of dynamical evolution
- see Helmi & White (1999), McMillan & Binney ??, Gomez et al???

<u>in situ stars: high [Fe/H] and [alpha/Fe]</u> (Zolotov et al, 2010)

Observations: the Stellar Halo Bell et al (2010) [see also ECHOs – Schlauffman et al]

