The Atomic to Molecular Transition

Simon Glover (ITA/ZAH, Heidelberg)

Collaborators: M. Mac Low, R. Shetty, P. Clark

Transition from H to H₂

H₂ formation

H₂ forms on dust grains at a rate: R_{form} = 3 × 10⁻¹⁷ f(T,T_d) (Z/Z_☉) n n_H cm⁻³ s⁻¹
For typical CNM conditions, f(T,T_d) ~ 1
H₂ formation timescale: t_{form} ~ 10⁹ n⁻¹ (Z/Z_☉)⁻¹ yr

H₂ photodissociation

In optically thin gas, H₂ photodissociated by UV photons at a rate:

 $R_{dis} = 3.3 \times 10^{-11} G_0 s^{-1}$

For standard UV field, this corresponds to a photodissociation timescale:

 $t_{dis} \sim 1000 \ G_0^{-1} \ yr$

 \oslash In optically thin gas, H₂ fraction always small

- Two main effects protect H₂ against photodissociation: self-shielding and dust
- Self-shielding: unimportant for log N_{H2} < 14 For higher column densities, we have:

 $R_{dis, thick} = R_{dis, thin} \times (N_{H2} / 10^{14} \text{ cm}^{-2})^{-0.75}$

Dust reduces photodissociation rate by a factor:

 $R_{dis, thick} = R_{dis, thin} \times exp(-3.7 A_V)$

Gillmon et al. (2006)

Krumholz et al (2009)

Krumholz et al. model assumes chemical equilibrium

Probably valid in a global sense, but may not hold so well on scale of individual clouds

Glover & Mac Low 2011

Transition from C+ to CO

Carbon chemistry

Far more complex than hydrogen chemistry; multiple routes to form CO

Most routes to CO require H₂

CO destroyed primarily by photodissociation

CO self-shielding not very effective, dust shielding generally dominates

- Numerical modelling helps us deal with complexity
- Now possible in realistic 3D models (see e.g. Glover et al, 2010)

Main findings: CO needs $A_V > 1$, but forms rapidly when we have H_2

Pineda et al. (2008)

Glover & Mac Low 2011

Glover & Mac Low 2011

Need less dust to get high H₂ fractions than to get high CO fractions

- Molecular clouds permeated by gas that is H₂-rich but CO-poor
- Small molecular clouds may be completely invisible in CO
- Implication: X factor very sensitive to mean dust extinction

Glover & Mac Low (2011)

Shetty et al. (2011); arXiv:1104.3695

Shetty et al. (2011); arXiv:1104.3695

Higher temperatures at fixed column are a natural consequence of a higher ISRF

Expect increased velocity dispersion in regions with higher stellar feedback. If clouds aren't virialized, then N_{H2} need not be larger

See also Narayanan et al. (arXiv: 1104.4118), who come to similar conclusions

Do we actually need th molecules?

SPH simulations of isolated, gravitationally bound molecular clouds
Cloud mass = 10000 solar masses
Mean density = 300 cm⁻³
Use 2 million SPH particles, for a mass resolution of 0.5 solar masses

5 different simulations:

- no shielding
- no chemistry, gas remains atomic
- H₂ chemistry, but no CO
- H₂ and CO chemistry, hydrogen initially atomic

Glover & Clark (2011)

Glover & Clark (2011)

Glover & Clark (2011)

Summary

In equilibrium, sharp transition from HIdominated regime to H₂-dominated regime; explains upper limit on typical HI column densities (see also Schaye 2001)

May take a long time to reach equilibrium, particularly at low n and/or low Z

Abundant CO requires higher A_V than
 abundant H₂ ⇒ expect "dark" molecular gas

Summary (II)

X factor for a given cloud depends on mean extinction, velocity dispersion, temperature

- To understand X factor on larger scales, need to average over appropriate cloud distribution
- Molecular gas not necessary for star formation; simply traces regions where gas is cold