HI Scaling relations for active and passive bulge-dominated massive galaxies

S. Fabello

G. Kauffmann, B. Catinella (MPA), R. Giovanelli, M. P. Haynes D. Schiminovich T. Heckman

(Cornell U.), (Columbia U.), (John Hopkins U.)

Max-Planck-Institut für Astrophysik

GAS IN GALAXIES June, 15th 2011

Cold Gas is fundamental: fuel for future Star Formation

to different effects?

• If gas is removed \Rightarrow SF is suppressed

Schiminovich+08 (Faber+07)

New gas reservoirs could lead to new SF

The sample

Selection criteria as GASS - GALEX Arecibo SDSS Survey: (Catinella+ 2010)

- $10 < \log(M_*/M_{\odot}) < 11.5;$
- 0.025 < z < 0.050;
- SDSS (York+ 2000) spectroscopic survey;
 GALEX (Martin+ 2005) MIS.
- ALFALFA (Giovanelli+ 2005) data available.

ALFALFA data-cube: RA, Dec, velocity extracting spectra at given position and redshift

Non-detection

GAS IN GALAXIES

All spectra

Non-detection only

vel [km s⁻¹]

ALFALFA HI Data Stacking I. Does the Bulge Quench Ongoing Star Formation in Early-Type Galaxies?

Silvia Fabello^{1*}, Barbara Catinella¹, Riccardo Giovanelli², Guinevere Kauffmann¹, Martha P. Haynes², Timothy M. Heckman³, David Schiminovich⁴

2011, MNRAS, 411, 993

Early-types: quiescent/red sequence/ bulge dominated

 Detection rates vary with samples and depth (from 2 up to 44 %), as well as properties observed.

Missing a statistically representative sample

 Works suggesting that bulge stabilizes gas, preventing it from collapsing into stars

Previous works by: Knapp+ 1985, Wardle & Knapp 1986, Bregman+ 1992, Serra+ 2006, Morganti+ 2006, Helmboldt+ 2007, Grossi+ 2009, ... Ostriker & Peebles 1976; Martig+ 2009 Starting from Sample A, extracted bulge-dominated galaxies:

- C = R₉₀/R₅₀ ≥ 2.6; best tracer of bulge-to-total ratio (Gadotti 2009; Weinmann+ 2009)
- Best fit De Vaucouleurs;
- Inclination < 70°

(10 % already detected)

GAS IN GALAXIES

At fixed M_{*} Bulge-Dominated are gas-poorer, but...

Sample A B-D galaxies

At fixed colour and μ_* B-D have same HI content! D D Salazios

Colour is the main parameter which drives the gas content

GAS IN GALAXIES

Cold gas associated with disk

ALFALFA HI Data Stacking II. HI content of the host galaxies of AGN.

Silvia Fabello^{1*}, Guinevere Kauffmann¹, Barbara Catinella¹, Riccardo Giovanelli², Martha P. Haynes², Timothy M. Heckman³, David Schiminovich⁴

> MNRAS, in press ArXiv: 1104.0414v1

Most massive galaxies host a BH; (Kormendy 2004)
 BH may be actively accreting

- Can (and how much) energy from AGN influence the HI properties of the host?
- Need a direct link between AGN and cold gas content of host (and a well-defined control sample to eliminate secondary trends)

HI in AGN hosts

Starting from Sample A, extracted:

• 1871 AGN:

above Kauffmann+03a solid line

• Control galaxies:

one-to-one matched in (NUV-r) and $\mu\ast$

HI in AGN hosts

- Gas fraction increases with accretion rate;
- No differences between control galaxies and AGN

eg: Ho+08

HI in AGN hosts

Two accretion regimes? Kauffmann & Heckman 09

Gas-rich: gas content independent of accretion Gas-poor: gas fraction traces accretion NO differences between control galaxies and AGN

Summary & Conclusions

- The HI content in massive galaxies can be quantitatively predicted by color (and mass surface density) only
 - ⇒ bulge does not make differences in the HI content; cold gas only associated with disks?
- On global scales the cold gas is not affected by AGN emission.
 - Agreement with others (Ho+2008)

Feedback may effective on smaller scales (check with molecular hydrogen) or higher accretion regimes (check with radio sample).

