

Deep Studies of the Universe at 21cm

The Arecibo Ultra-Deep Survey (AUDS)

Laura Hoppmann¹, Lister Staveley-Smith¹, Wolfram Freudling² & AUDS team

International Centre for Radio Astronomy Research

International Centre for Radio Astronomy Research M468, The University of Western Australia, ² European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany

Arecibo Ultra Deep Survey (AUDS)

- \rightarrow Deep 21cm blind survey
- Aim: Increasing limit of direct detections of extragalactic HI Idea: Long integration on a small field
- → Telescope: 305m Arecibo Observatory
 → Instrument: ALFA (Arecibo L-Band Feed Array)

Science Goal: Gaseous Evolution in Galaxies

- \rightarrow HI is a key ingredient for star and galaxy formation
- → Star formation increases by a factor of five between $z \approx 0$ and $z \approx 1$ (e.g. Hopkins 2004)
- \rightarrow Goal: Correlate cosmic neutral hydrogen density ($\Omega_{\rm HI}$) to star formation rate
- \rightarrow Problem: Observations at cosmological distances (z < 0. 1) are scarce
- \rightarrow But: Intermediate redshifts are crucial to improve our understanding of galaxy formation

Galaxy formation remains a fundamental question in modern astrophysics.

- $\rightarrow z = 0 0.16$
- \rightarrow 7 beams
- \rightarrow 1200h Observation time on two fields
 - $\rightarrow 2577: \alpha = 08:20:00 \delta = 22:11:00$
 - \rightarrow 17H: α = 17:00:00 δ = 19:45:00
 - \rightarrow 40h per pointing
 - \rightarrow Drift-and-scan mode

 \rightarrow Area: 0.36 deg²

AUDS Precursor Observations (Freudling et al. 2011)

- \rightarrow Precursor observations proof feasibility of AUDS
 - \rightarrow 53 hours of integration time
 - \rightarrow sensitivity level of 80µJy
 - → 18 detected HI sources in redshift range: z=0.07-0.15 $_{z=42645\ km/sec}$

RFI & Flagging

- \rightarrow All data are impacted by radio frequency interference (RFI) in certain channels
- \rightarrow Robust identification and flagging of RFI necessary
 - \rightarrow Automatic routine using 3-sigma clipping and smoothing in the time-frequency domain

- \rightarrow HI Mass function (HIMF)
 - → HIMF computed from sample using the standard 1/vmax method (Schmidt 1968)
 - → Comparison of AUDS HIMF to HIPASS local HIMF (Zwaan et al. 2005)
 - → shape of the derived HIMF consistent with the local HIMF
 - → normalisation of HIMF is by a factor of 3.2 ± 1.0 higher than the local HIMF
 - \rightarrow Reason: AUDS samples a smaller volume which was not chosen randomly (relative HI overdensity in region: $\delta_{\rm HI}=2.5\pm0.8$)
 - \rightarrow Derived mean HI density:

Fig.: Allocation of observation time in both survey fields(left); One of the first detected sources in the preliminary cubes at z≈0.157, spectrum (right), image (left)

The AUDS team

Barbara Catinella: Max-Planck-Institut fur Astrophysik
Robert Minchin: Arecibo Observatory
Mark Calabretta: Australia Telescope National
Emmanuel Momjian: National Radio Astronomy Observatory
Martin Zwaan: European Southern Observatory
Martin Meyer: International Centre for Radio Astronomy Research
Karen O'Neil: National Radio Astronomy Observatory

Contact Laura Hoppmann International Centre for Radio Astronomy Research, M468, University of Western Australia, Crawley, 6009, Australia Email: <u>laura.hoppmann@icrar.org</u> Phone +61 8 6488 4583

