## Metal-Enriched Galactic Outflows and their impact on the CGM

John Chisholm Hubble Fellow University of California-Santa Cruz

with Christy Tremonti and Claus Leitherer



### Down-the-barrel absorption lines use background starlight to measure the column density and velocity of outflowing gas





See also: Heckman+ 2000 Rupke+ 2005, Martin 2005, Tremonti+ 2007, Steidel+ 2010, Martin+ 2012, Rubin+ 2014, Heckman+ 2015

### Down-the-barrel absorption lines use background starlight to measure the column density and velocity of outflowing gas



Blue: Lyα, Red: Hα, Green: UV continuum (Östlin+ 2009) See also: Weiner+ 2009, Steidel+ 2010, Martin+ 2012, Rubin+ 2014, Heckman+ 2015

# Strong absorption lines observed in the far-ultraviolet cover a wide range of ionization potentials



# The HST archive sample spans a large range of host galaxy properties



# The presence and strength of the different absorption lines trace the outflow ionization structure



### The outflow ionization state sets the ratio of different FUV absorption lines



# The ratio of UV lines determines the ionization of the outflows



### The outflow ionization state sets the ratio of different FUV absorption lines





### A Bayesian method uses the observed absorption lines and Cloudy models



### A Bayesian method uses the observed absorption lines and Cloudy models



# The inferred outflow metallicities are larger than the observed ISM metallicities: outflows are metal enriched



#### Outflows from low-mass galaxies remove up to 10 times more mass than the galaxies convert into stars



#### These mass-loading factors have similar scalings as simulations, but generally lower values



### Metal-enriched outflows carry metals out of starforming regions and into the CGM









$$\frac{\dot{M}_o}{SFR} = 0.8 \left(\frac{M_*}{10^{10}M_{\odot}}\right)^{-0.4}$$

$$\dot{M}_o = \frac{dM_o}{dt}; dt = \frac{dM_*}{SFR}$$

$$dM_o = 0.8 \left(\frac{M_*}{10^{10}M_{\odot}}\right)^{-0.4} dM_*$$

$$M_o = 1 \times 10^{10} M_{\odot} \left(\frac{M_*}{10^{10}M_{\odot}}\right)^{0.6}$$
omparable to what is observed the CGM, but doesn't include

 $\log M_{\star} (M_{\odot})$  Chisholm+ 2017

in the CGM, but doesn't includ inflow, recycling, and other outflow components

С

### Conclusions





Outflow ionization varies from galaxy to galaxy

The mass-loading factor decreases with M<sub>\*</sub>. Outflows from low-mass galaxies remove 10 times more mass than SFR. The outflows remove a similar amount of gas as is observed in the CGM

Observed metal outflow rates are sufficient to establish the MZR



### The Si IV optical depth and covering fractions change coherently with velocity velocity (km/s)



- These distributions are from a single galaxy, NGC 6090
- Optical depth increases at low velocity, and decreases at high velocity
- Covering fraction steadily decreases from low velocities to 300 km/s

# The optical depth evolves because the density and velocity gradient change with velocity and radius



