Large-scale baryon transfer in cosmological simulations
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FIRE cosmological “zoom-in’’ simulations
Hopkins et al. 2014, 2018
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Mock three-color image
(u/g/r bands) of galactic
projection seen at 10 kpc
from the center of MW-

mass galaxy (Wetzel+16) . R " A v .
1) Resolving individual star-forming regions in full cosmological context

2) Stars form from high density (n > 1000 cm3), molecular, locally self-gravitating gas

3) Local feedback from supernovae, stellar winds, and radiation from Starburst99

Bt = ronmen 4) Reproduce many galaxy properties without tuning parameters






Properties of galactic winds

Wind loading factor, recycling fraction, recycling time/distance... = Anglés-Alcazar+2017b

“Wind loading factor” = Mass ejected / Stellar mass formed

—> Large mass-loading factors in
low mass galaxies

Measured (e.g. FIRE, Christensen+20186,...) =
or S
. . . )
Required (e.g. Oppenheimer+, TNG, Simba, oc
Auriga,...)
Angles-Alcazar+2017
Muratov+2015
[llustris
TNG
Implications?
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- “Wind recycling”

Gas ejected and re-accreted







Wind recycling and transfer events
are common in every galaxy’s history!

Anglés-Alcazar+2017b



Intergalactic Transfer
Anglés-Alcazar+2017b

From small satellites onto
Milky-Way mass galaxy

Quasi-spherical outflows unbind
interstellar medium gas from satellites P

Satellite winds are easily stripped by
ram pressure

-> Up to 1/3 of stellar mass at z=0!

See Grand+2019 for qualitatively consistent results from Auriga
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Tracing the origin and fate of c1rcumgalactlc medlum
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Hafen+2019a,b
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Tracing the origin and fate of c1rcumgalact1c medlum
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Simba = vufasa + black holes [ PN - Davé, Anglés-Alcazar+2019

..

With Romeel Davé, Desika Narayanan, ...

Galactic winds based on FIRE simulations
(Anglés-Alcazar+17b)

Two-mode black hole accretion:

— Cold gas inflow driven by gravitational torques
(Hopkins & Quataert 2011, Anglés-Alcazar+17a)

— Bondi accretion from hot gas

Two-mode black hole feedback:
(kinetic+bipolar; Anglés-Alcazar+17a)

— Radiative (A>0.02): v=1000 km/s, P=20L/c
- Jet (A<0.02): v =8000 km/s

+ X-ray heating (Choi+2012)

Dust production, growth, and destruction
(passively advected; Li+2019)



Why I keep asking Joop Schaye again and again...

Bondi accretion rate = 41 G? Mgg? p /¢ =  Divergence timescale = ¢ / (41 G? M,..q P)

= BONDI can suppress early BH growth
EAGLE simulation: even with continuous gas supply!

stellar feedback suppresses early BH growth? > Transition depends on ¢, Myeeq, p, and

normalization
Bower+2017

— logyy(p/cm™?)=0.0 Solid lines: ¢, = 10 km/s
— logyo(p/cm™*)=0.5 Dashed lines: ¢, = 30 km/s
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Cosmological baryon transfer in the Simba simulations

Josh Borro
Durham University

Distance to nearest dark matter particle neighbor at:

Initial conditions (z=99)

Borrow, Anglés-Alcazar & Davé (2019)

The “Spread” Metric
- Quantify relative motion between baryons and dark matter

Present day (z=0)




Cosmological baryon transfer in the Simba simulations

- Dark Matter (largest halo)
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Cosmological baryon transfer in the Simba simulations
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Cosmological baryon transfer in the Simba simulations

z=0

Dark matter can move
up to 7 Mpc relative to
the 1nitial nearest

- neighbor!

Probability density distribution
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Cosmological baryon transfer in the Simba simulations

Borrow+2019

All Dark Matter

All Gas  m—
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Gas can move up to 12 Mpc relative
to the initial nearest DM neighbor!

—> Baryons decouple from the dark
matter due to hydrodynamic

forces, radiative cooling, and
feedback

- 40% of baryons have spread more
than 1 Mpc!



Cosmological baryon transfer in the Simba simulations

Borrow+2019
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Gas can move up to 12 Mpc relative
to the initial nearest DM neighbor!

—> Baryons decouple from the dark
matter due to hydrodynamic

forces, radiative cooling, and
feedback

- 40% of baryons have spread more
than 1 Mpc!



Cosmological baryon transfer in the Simba simulations

Borrow+2019

All Dark Matter e
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Gas in Lagrangian Regions
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Gas can move up to 12 Mpc relative
to the initial nearest DM neighbor!

—> Baryons decouple from the dark
matter due to hydrodynamic

forces, radiative cooling, and
feedback

- 40% of baryons have spread more
than 1 Mpc!



Where does the gas that end

up 1n halos come from? 2 Mpc

Dark matter halo =

Lagrangian region —>

z=99 Mhalo=7X1013 M@



Where do the baryons that

end up in halos come from? Spatial distribution of gas at the initial conditions

Halo 0
M, = 3x10“ ! M,

Halo 13
M, = 3IX10B ' M
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Particles in halo at z=0
Particles in LR at z=99



Where do the baryons that = 60% of halo gas originates from its Lagrangian region (but
halos retain only 20-30% of the original LR gas)

end up 1n halos come from?

All Baryons Gas Stars
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1) FIRE predicts large mass-loading in low-mass galaxies

—> Most stars form out of wind-recycled gas

—> Inter-galactic transfer of gas from satellites important for galaxy assembly
and CGM composition

Anglés-Alcazar+2017b, Hafen+2019a,b, Muratov+2015,2017

2) Cosmological baryon transfer in the Simba simulations -
- Spread metric quantifies global effect of feedback and separates hierarchy |
- 40% of baryons move > 1 Mpc relative to the dark matter

—> Inter-Lagrangian transfer can provide 10% of CGM gas at z=0

Davé+2019, Borrow+2019




