Research Highlights

On this page you can find a monthly updated list of short articles highlighting current MPA research topics.

Current Research Highlights

Teaser image vertical 1444730569

The Distribution of Atomic Hydrogen in Simulated Galaxies

November 01, 2015
In simulated galaxies of the hydrodynamical cosmological “EAGLE” simulation the distribution of atomic hydrogen agrees with observations in unprecedented detail. This success means that EAGLE can aid astrophysicists to better understand the processes shaping real galaxies, such as the origin of their atomic hydrogen. EAGLE is not quite perfect, however: the study also found that some simulated galaxies contain unphysically large holes in their atomic hydrogen discs, meaning further work for simulators to improve the models underlying the treatment of supernova explosions and the interstellar matter. [more]
Teaser image horizontal 1442223318

Solving the hydrostatic mass bias problem in cosmology with galaxy clusters

October 01, 2015
Booming observations of galaxy clusters provide great opportunities for exploring the nature of Dark Energy. At the same time, they post great challenges to scientists. The "hydrostatic mass bias" problem, which leads to a systematic error in estimating the mass of galaxy clusters, is one big limitation when doing precision cosmology with galaxy clusters. Now researchers at MPA have developed a method to correct for it. [more]
Teaser image horizontal 1440680749

New limits on the spectral distortions of the Cosmic Microwave Background

September 01, 2015
New data from the Planck satellite and the South Pole Telescope on the Cosmic Microwave Background (CMB) combined with a new component separation algorithm developed at MPA give much tighter limits on two parameters measuring the deviation of the CMB from a blackbody radiation. These results can be used to constrain new physics in the very early universe and to study the correlations between the primordial fluctuations on very small and very large angular scales. [more]
Teaser 1439213257

Three-dimensional computer simulations support neutrinos as cause of supernova explosions

August 01, 2015
Latest three-dimensional computer simulations are closing in on the solution of an decades-old problem: how do massive stars die in gigantic supernova explosions? Since the mid-1960s, astronomers thought that neutrinos, elementary particles that are radiated in huge numbers by the newly formed neutron star, could be the ones to energize the blast wave that disrupts the star. However, only now the power of modern supercomputers has made it possible to actually demonstrate the viability of this neutrino-driven mechanism. [more]
Teaser 1434626031

Understanding how stars form from molecular gas

July 01, 2015
The star formation rate in galaxies varies greatly both across different galaxy types and over galactic time scales. MPA astronomers have been trying to gain insight into how the interstellar medium may change in different galaxies by studying molecular gas in a wide variety of galaxies, ranging from gas-poor, massive ellipticals to strongly star-forming irregulars, and in environments ranging from inner bulges to outer disks. They find that the gas depletion time depends both on the strength of the local gravitational forces and the star formation activity inside the galaxy. [more]
Teaser image horizontal 1432636913

A new observable of the large-scale structure: the position-dependent two-point correlation function

June 01, 2015
Observations of the large-scale structure, such as galaxy surveys, are one of the most important tools to study our universe. In particular, how the growth of structure is affected by the large-scale environment can be used to test our understanding of gravity, as well as the physics of inflation. A research group at MPA has recently developed a new technique to extract this signal more efficiently from real observations. Specifically, we divide a galaxy survey into sub-volumes, quantify the structure and the environment in each sub-volume, and measure the correlation between these two quantities. This technique thus opens a new avenue to critically test fundamental physics from real observations. [more]
Standard 1430991255

Understanding X-ray emission from galaxies and galaxy clusters

May 01, 2015
By combining data for more than 250,000 individual objects, an MPA-based team has for the first time been able to measure X-ray emission in a uniform manner for objects with masses ranging from that of the Milky Way up to that of rich galaxy clusters. The results are surprisingly simple and give insight into how ordinary matter is distributed in today's universe, and how this distribution has been affected by energy input from galactic nuclei. [more]
Go to Editor View
loading content