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ABSTRACT

Context. Mixing by convective overshooting has long been suggested to play an important role in the amount of hydrogen available
for nuclear burning in convective cores of stars. The best way to model this effect is still debated.
Aims. We suggest an improved model for the computation of the dissipation rate of turbulent kinetic energy which can be used in
non-local models of stellar convection and can readily be implemented and self-consistently used in 1D stellar evolution calculations.
Methods. We review the physics underlying various models to compute the dissipation rate of turbulent kinetic energy, ε, in local
models of convection in stellar astrophysics and particularly in non-local ones. The different contributions to the dissipation rate and
their dependence on local stratification and on non-local transport are analysed and a new method to account for at least some of these
physical mechanisms is suggested.
Results. We show how the new approach influences predictions of stellar models of intermediate-mass main-sequence stars and
how these changes differ from other modifications of the non-local convection model that focus on the ratio of horizontal to vertical
(turbulent) kinetic energy.
Conclusions. The new model is shown to allow for a physically more complete description of convective overshooting and mixing in
massive stars. Dissipation by buoyancy waves is found to be a key ingredient which has to be accounted for in non-local models of
turbulent convection.
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1. Introduction

From the early work of Biermann (1932) onwards, research
on convection has remained a major challenge in stellar astro-
physics, in particular as convection turned out to be one of the
most important mechanisms of energy transport and mixing in
stars. As is described, for instance, in Canuto et al. (2009), when
we compare the spatial scales of viscous processes derived from
the results of Chapman (1954) on fully ionised gases with the
spatial scales of convective flow observed at stellar surfaces
(Kupka & Muthsam 2017), stellar convection is characterised by
very high Reynolds numbers. Stellar convective flows are thus
highly turbulent, even though the direct detection of turbulence
is difficult due to the nature and resolution of the observational
methods available to us (cf. Kupka & Muthsam 2017).

Modelling this class of flows poses serious challenges
for stellar structure and evolution models (for introductions
and reviews see, e.g. Weiss et al. 2004; Canuto et al. 2009;
Kupka & Muthsam 2017; Kupka et al. 2020). Due to the
extreme range of scales in space and time, numerical hydro-
dynamical simulations cannot be used directly in stellar evolu-
tion calculations (cf. the estimates given in Kupka & Muthsam
2017). Consequently, turbulent convection has to be modelled in
a framework affordable for direct coupling into one-dimensional

(1D) stellar models of stellar evolution. The turbulent convection
models (TCMs) used in this approach differ widely in computa-
tional costs, physical completeness, and general principles con-
sidered in their derivation, from completely phenomenological
to more systematic approaches based on turbulence theory (see
Kupka & Muthsam 2017 for an overview).

One methodological way to derive TCM equations that are
suitable for stellar evolution calculations is the Reynolds stress
approach. The splitting of variables in turbulent flow into a mean
and a fluctuating component was first introduced by Reynolds
(1894), followed by the suggestion of Keller & Friedmann
(1925) to consider this Reynolds splitting for a moment expan-
sion approach that was first completed by Chou (1945). Dynami-
cal variables such as velocity u, density ρ, or entropy s, for exam-
ple, can be subject to such splitting:

u = u + u ′, ρ = ρ + ρ′, s = s + s′, . . .

Strictly speaking these are ‘ensemble averages’ over different
initial conditions. In practice, the variables are also subject to
spatial averaging, in 1D stellar models typically over the θ and
φ directions, to which the overbar in the above notation refers
to whereas the component with a prime refers to the fluctuating
part of each quantity.

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.

A96, page 1 of 17

https://doi.org/10.1051/0004-6361/202243125
https://www.aanda.org
http://orcid.org/0000-0002-7285-4801
http://orcid.org/0000-0003-0343-6945
http://orcid.org/0000-0002-3843-1653
mailto:friedrich.kupka@technikum-wien.at
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


A&A 667, A96 (2022)

Due to their immediate physical meaning, the higher order
combinations of the fluctuating parts which appear in such
Reynolds stress models of turbulent convection are also model
predictions of direct astrophysical interest. The second order
moment of velocity fluctuations, characterising the turbulent
kinetic energy (TKE) of the convective flow, is directly related to
the highly efficient chemical mixing induced by convection. In
stars with nuclear burning in convective cores, this has a direct
impact on the luminosity and the lifetime of the nuclear burn-
ing phase. Similarly, the second order moment of velocity and
entropy fluctuations, related to the convective flux, determines
the energy transported by convection. Computing the convective
flux allows one to predict the temperature gradient in convec-
tive regions. Recently, the temperature gradient in core boundary
layers of an intermediate-mass main-sequence star was probed
using asteroseismology (Michielsen et al. 2021), an observation
that can directly be compared to results from a TCM.

Presently, the most commonly used theory to describe
convection in stellar structure and evolution models is still
the mixing length theory (Böhm-Vitense 1958, MLT). How-
ever, MLT is not able to describe the convective boundary
in a physically accurate way. Observations have shown that
chemical mixing beyond the boundary of convectively unsta-
ble regions, commonly known as overshooting, is required
(see, for example, Maeder & Mermilliod 1981; Bressan et al.
1981; Pietrinferni et al. 2004). In stellar models using MLT,
parametrised ad hoc mixing beyond the boundary is introduced
to achieve this. Likewise, the temperature structure of an over-
shooting region cannot be predicted by MLT. These examples
highlight the need for more physical theories of convection, such
as TCM, being included in stellar structure and evolution mod-
els.

A large number of TCM have been developed (Xiong et al.
1997; Canuto 1992, 1993; Canuto & Dubovikov 1998;
Li & Yang 2001, 2007; Kuhfuß 1986, 1987) which differ
in the set of variables used and the set of approximations and
assumptions made (see Canuto 1993 and Kupka & Muthsam
2017 for comparisons and a review). Among other physical
effects, the dissipation of TKE requires a careful discussion in the
context of TCM. Acting as a sink term for TKE in overshooting
layers, the dissipation rate has a direct impact on the extent of
convectively mixed regions. Assuming a Kolmogorov spectrum
of turbulence, the dissipation rate of TKE can conveniently
be computed by a local expression involving a dissipation
length scale with a single constant parameter. This expression
is, however, inapplicable in non-local situations, encountered
in layers adjacent to convectively unstable zones. To treat the
dissipation of TKE in non-local convection models, a physically
more complete description of the dissipation rate is required
(Zeman & Tennekes 1977; Canuto & Dubovikov 1998).

We begin this paper by discussing local and non-local
descriptions of the dissipation of TKE in Sect. 2. From the dissi-
pation rate in non-local convection theories we derive a model to
account for the dissipation of TKE by buoyancy waves in over-
shooting layers in Sect. 3. In Sect. 4 we then discuss implications
of the improved dissipation model when applied to stellar mod-
els. For the computation of the stellar models we use the TCM
derived by Kuhfuß (1987) implemented into the GARching
STellar Evolution Code (GARSTEC, Weiss & Schlattl 2008).
The key assumptions and approximations of the Kuhfuß (1987)
model are reviewed in Appendix A. Using the local expres-
sion for the dissipation rate of the TKE, we find an excessive
overshooting extent beyond convective cores. When including
the dissipation by buoyancy waves, this overshooting is limited

to a physically more reasonable range. This allows us to pre-
dict the convective core sizes and temperature structures of stars
with different masses. We present our conclusions in Sect. 5. A
detailed discussion of the results obtained from the improved
TCM can be found in Ahlborn et al. (2022; Paper II in the
following).

2. On the dissipation rate ε of turbulent kinetic
energy

The necessity to account for the dissipation rate of turbulent
kinetic energy, ε, in models of convection stems from the fact
that it is not a negligibly small quantity. Indeed, the expression
from which ε is computed is proportional to the kinematic vis-
cosity ν. The latter is small in stars compared to the radiative
diffusivity χwhich results in the small values of the Prandtl num-
ber Pr = ν/χ typical for stars. Energy conservation requires ε to
remain finite and non-negligible even in the limit of small vis-
cosity (see Canuto 1997b). Neglecting compressibility (for its
modelling cf. Canuto 1997a) we can compute ε from

ε = 2 ν
(
∂ui

∂xi

)2

= 2 νΩ = 2 ν
∫

k2E(k)dk (1)

in case of a locally isotropic, homogeneous flow. Here, ui is the i-
th velocity component, xi is the i-th component of location, and
E(k) is the spectrum of turbulent kinetic energy as a function
of wavenumber k1. Although convection is neither isotropic nor
homogeneous on those large scales on which its contribution to
energy transport is maximal, Eq. (1) is a sufficient approxima-
tion to explain some basic properties of turbulent convection2.
In a quasi-stationary state where the amount of kinetic energy
injected into the system per unit of time equals ε, the enstro-
phy Ω of the flow increases, if ν decreases. The latter follows
from the vorticity ω through 2 Ω = ω2. Thus, ε is constrained by
energy conservation and quantifies the amount of kinetic energy
converted into thermal one.

If for a flow both the first and second Kolmogorov hypothe-
ses hold (Pope 2000), then there exists a range of length scales
` = π/k for which ε is independent of ν and independent
of the details of the large scale input of kinetic energy into
the flow. This region is known as the Kolmogorov inertial
range. In that region ε is solely described by the exchange
of energy between larger and smaller scales. If this exchange
peaks between neighbouring scales (see Lesieur 2008), which
is assumed to hold for turbulent flows except for corrections
due to intermittency (see also Pope 2000), it can be mod-
elled as a flux in k-space. This is one of the basic inputs for
the turbulence model of Canuto & Dubovikov (1996) used in
Canuto & Dubovikov (1998) to justify the mathematical form
and the constants involved in closure relations derived for their
one-point closure Reynolds stress model of convection (see their
Eq. (9c)).

One important consequence for Eq. (1) is the following one:
if an inertial range exists, it can be shown to require

E(k) = Ko ε2/3 k−5/3 (2)
1 Concerning notation the convention of summation over equally
named indices is assumed.
2 In real world systems the spectra of turbulent kinetic energy, E(k),
usually depend on location r and in the most general sense an averag-
ing over directions in k-space would have to be performed, i.e. E(k)
becomes a two-point correlation function E(k, r) and would also have
to account for density fluctuations.
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to hold, i.e. a Kolomogorov spectrum to exist. Here, Ko is the
Kolomogorov constant which also turns out to equal 5/3 in the
model of Canuto & Dubovikov (1996, 1998), just as the power
law index for k in the spectrum, Eq. (2). Recalling Eq. (1) this
demands that the contributions of small scales k to ε increase
with k1/3 and a region where the Kolmogorov inertial range no
longer holds, just around the dissipation scale kd = π/`d, would
have to be characterised more accurately than through Eq. (2)
for a direct computation of ε from the spectral energy distribu-
tion E(k) and Eq. (1). Within a one-point closure model and thus
in any of the prescriptions used in astrophysics to compute the
convective flux inside a stellar structure code, this is not feasible
and a different approach is required to compute ε.

2.1. Computation in local models: spectra and local limits

One way around computing the spectrum ε(k) is to just compute
its integral value ε from a model of E(k) as follows. Assume
that ν is negligibly small. In the limit of vanishing ν the lat-
ter can ensure that its product with

∫
k2 E(k) dk remains finite

even though Ω might increase indefinitely for arbitrarily large k.
Hence, as in the derivation of Eq. (5b) of Canuto & Dubovikov
(1998) and as also in their Sect. 6.4, assume that E(k) is given
by Eq. (2) from a certain value k0 onwards, i.e. the entire energy
spectrum is given by a Kolmogorov spectrum with an energy
cutoff for k < k0. Thus, E(k) = 0 for k < k0 and E(k) ∼ k−5/3

for arbitrarily large k with k > k0. In this case, it is easy to first
obtain K, the turbulent kinetic energy (TKE), from integration of
E(k) over all wavenumbers:

K =

∫ ∞

0
E(k) dk =

∫ ∞

k0

E(k) dk, if E(k) = 0 for k < k0, (3)

and with Eq. (2) we obtain from Eq. (3) that

K = Ko ε2/3 k−2/3

−2/3

∣∣∣∣∣∣∞
k0

=
3 Ko

2
ε2/3k−2/3

0 . (4)

For `0 = π/k0 this can be quickly rearranged to yield

ε = π

(
2

3 Ko

)3/2 K3/2

`0
= cε

K3/2

`0
= cε

K3/2

Λ
, (5)

as shown in Canuto & Dubovikov (1998)3. This is also the
standard ‘local’ or ‘mixing length’ prescription for the com-
putation of ε. It assumes maximum separation of the energy
carrying scales around `0 and the Kolmogorov dissipation scale
`d (assumed to be negligibly small, and not to be confused with
Λ). Moreover, it assumes validity of the inertial range as if all
the energy input were at one length scale only, i.e. at `0, here
set to be equal to Λ. All other scales for which ` & `0 behave
as if they were unaffected by the very small scales (scale sepa-
ration) and also by the details of the energy input. Thus, a per-
fect energy cascade is assumed. Mixing length theory (MLT) in
addition replaces E(k) with a δ-function peaked at l0 such that
its integral yields Eq. (5). It is thus a ‘one-eddy approximation’
where all the energy transport due to convection occurs on the
critical (mixing) length scale Λ which has to be computed for
each layer. Either way, the challenge of computing ε turns into
the challenge of prescribing Λ.

3 It is important to note that there is a typo in their Eq. (5c) which
should have the constant Ko in the denominator.

Evidently, this cannot be an accurate model, since at least a
range of scales spanning easily an order of magnitude (consider
different granule sizes as an example) is expected to contribute
to energy transport at convective stellar surfaces such as those
of our Sun. Thus, Eq. (5) can at most be an estimate of order
O(1). For some flows such as a shear flow in a pipe (Poiseuille
flow), for which the mixing length formalism to compute the
turbulent viscosity had originally been proposed by L. Prandtl
(see Pope 2000, for example), this length can be fairly well con-
strained from geometrical arguments. Not surprisingly this is the
application for which this prescription is most reliable. For com-
pressible convection on the other hand this length is much more
difficult to constrain and the standard choice is to assume that

Λ = αHp (6)

where α is the MLT-parameter or mixing length parameter and
Hp is the local pressure scale height in the convective zone.
This situation has motivated Canuto & Mazzitelli (1991, 1992)
to suggest a new convection model in which ε is computed
directly from Eq. (3). That removes the uncertainties introduced
by the one-eddy approximation, but a scale length Λ is still intro-
duced in this model. It compares the geometric size of flow fea-
tures which transport most of the energy with the length scales
dominated by dissipation. This has permitted easy implemention
into existing stellar evolution codes based on MLT. The same
approach was used by Canuto et al. (1996).

But that concept collapses if an overshooting zone has to be
modelled. In such a region, located just underneath or above a
convectively unstable zone, the convective flow is fundamentally
non-local: the only way to sustain a non-vanishing solution is
transport of kinetic and potential energy from the adjacent con-
vective zone (cf. Sect. 10 in Canuto & Dubovikov 1998). For
such a region there is no reason to assume that the prescription
of Eq. (6) with an α independent of vertical location can still
hold.

Thus, even if other equations in a convection model are
treated non-locally, the continued use of Eq. (6) with Eq. (5)
along with a constant α even just within a single object may
lead to inconsistent or unphysical results, a fact long acknowl-
edged in the atmospheric sciences by much more advanced mod-
elling (see, for instance, Zeman & Tennekes 1977). As we show
below, this is exactly the problem one encounters when using the
3-equation Kuhfuß theory (Kuhfuß 1987), and it motivated the
present work on how to proceed and improve the computation of
ε in such a case.

2.2. Computation in non-local models: the dissipation rate
equation

A common starting point for non-local models of convection is
the dynamical equation for turbulent kinetic energy:

∂tK + ∂z

(
1
2

q2w + p′w
)

= gαvwθ − ε

+ ∂z (ν∂zK) +
1
2

Cii, (7)

as given in Canuto (1993), for example. In the Boussinesq case
though, the corrections due to compressibility given by the term
Cii are zero. For the case of a low Prandtl number and if there are
no contributions by a mean shear or rotation, we obtain (Canuto
1992)

∂tK + ∂z

(
1
2

q2w + p′w
)

= gαvwθ − ε (8)
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which within the Boussinesq approximation is an exact equa-
tion, though yet unclosed. Here, ∂t and ∂z are partial deriva-
tives with respect to time t and vertical (radial) coordinate z
(in case of radial coordinates ∂z → r−2∂r r2). This is a prog-
nostic equation for the second order moment K = q2/2 with
q2 = w2 + v2

θ + v2
φ derived directly from the Boussinesq approx-

imation of the Navier-Stokes equations through ensemble aver-
aging. The non-local transport includes the flux of kinetic energy
(in the Boussinesq approximation given by Fkin = ρ q2 w/2
with w as the fluctuating component of vertical velocity) and
of pressure fluctuations, p′ w. This is to be balanced by local
production, gαvwθ, and the local sink given by −ε. Through the
cross-correlation wθ the production is readily linked to the con-
vective (enthalpy) flux Fconv = cp ρwθ. The latter is exact in the
Boussinesq approximation and can be generalised to a compress-
ible flow. The quantities g, αv, cp, and ρ are the local (vertical)
gravitational acceleration, the volume expansion coefficient, the
specific heat at constant pressure, and mass density.

To solve Eq. (8) we need to know ε. The exact evolution
equation for ε was first derived by Davidov (1961). In their
Sect. 3, Hanjalić & Launder (1972) emphasised4 why it is diffi-
cult to close this equation. But in the same paper they also point
out how to proceed to derive a new equation which models the
transport of ε. One term (diffusional transport due to pressure
fluctuations) is argued to be small on general grounds compared
to other contributions while others are modelled such that the
ensuing closure constants can be determined in the case of sim-
ple flows directly from experiments: decaying turbulence behind
a grid and a constant-stress layer adjacent to a wall. Their model
equation for ε eventually reads

∂tε + Df(ε) = c1εK−1P − c2ε
2K−1 + ∂z(ν∂zε), (9)

where P means production of dissipation (due to shear or buoy-
ancy or both). The term ∂z(ν∂zε) is only relevant at moderate or
low Reynolds numbers and can always be neglected for small
Prandtl numbers as is the case for stars. The term Df(ε) was sug-
gested to be parametrised as

Df(ε) ≡ ∂z(εw) ≈ −
1
2
∂z

[
(νt)∂zε

]
, (10)

where νt requires a model for turbulent viscosity such as5 νt =
Cµ K2/ε with a closure constant Cµ. Although this term is mainly
relevant for moderate to low Reynolds numbers, it must be
kept and modelled, since this is just what we also encounter in
the case of overshooting zones. This is in contrast with terms
only relevant for moderate to large Prandtl numbers (i.e. only
in a non-stellar case) or which are small independently of the
parameter space considered: those we can safely neglect for our
applications. We emphasise that contrary to Eq. (8) all con-
tributions to Eq. (9) contain closure approximations. Hence,
Eq. (9) is essentially a model for ∂tε and not an exact evolution
equation.

Equation (9) was reconsidered by Canuto et al. (1994) and
Canuto & Dubovikov (1998), who also suggested the additional
contribution to Eq. (9) introduced in Zeman & Tennekes (1977):

4 In the literature the model discussed here is known as K − ε model or
“Imperial College model” since there the model had been developed by
Hanjalić & Launder (1972).
5 Note that this definition is different from Canuto & Dubovikov
(1998), Eq. (24c), which appears to have a typo.

∂tε + Df(ε) = c1εK−1gαvwθ − c2ε
2K−1 + c3εÑ + ∂z(ν∂zε),

Ñ ≡
√
gαv|β|. (11)

Here, β= − ((∂T/∂z) − (∂T/∂z)ad) is the superadiabatic gra-
dient. In addition to c1 = 1.44 and c2 = 1.92, which is close
to the middle of the typical range of values in earlier
work (Tennekes & Lumley 1972; Hanjalić & Launder 1976),
Canuto & Dubovikov (1998) suggested Cµ = 0.08 from their
turbulence model (Canuto & Dubovikov 1996), which they
obtained using Eq. (2).

Before quantifying the new term c3 ε Ñ more closely, the phys-
ical origin of the contributions to Eq. (11) requires some explana-
tion. The first term on the right hand side provides a closure for
the production of dissipation by buoyancy (Hanjalić & Launder
1972). The second term was discussed already in detail by
Hanjalić & Launder (1972) and represents a closure for the com-
bined effects of the exact terms describing the generation of vor-
ticity fluctuations through self-stretching in turbulent flows and
the decay of turbulence due to viscosity. For the exact term of dif-
fusion of ε by velocity fluctuations, Df(ε), both a down-gradient
closure (Hanjalić & Launder 1972) and a direct closure based on
the flux of turbulent kinetic energy (Canuto 1992) have been pro-
posed. The viscous diffusion term ∂z(ν∂zε) is also part of the exact
expression for diffusional transport and is suggested to be kept
when modelling flows in the regime of low to moderately high
Reynolds numbers, especially in the case of moderate to high
Prandtl numbers (see Hanjalić & Launder 1976).

For buoyancy driven flows Eq. (9) requires several changes
in comparison with Hanjalić & Launder (1972, 1976). We
refer the reader to the work by Zeman & Lumley (1976) and
Zeman & Tennekes (1977) which eventually allowed the deriva-
tion of Eq. (11). What follows from their and similar consid-
erations is that, irrespectively of the detailed physical nature
of increased local dissipation in the overshooting zone, a sep-
arately parametrised loss term that involves the superadiabatic
temperature gradient β, or actually, the Brunt-Väisälä frequency,
Ñ, is needed. With hindsight gravity waves are expected to
play the most important role as a source of ε. As argued by
Zeman & Tennekes (1977), this involves a characteristic length
scale which can be computed from the ratio of flow velocity w2

and Ñ. It can also be viewed as the distance which eddies of
a certain size that penetrate into the stable layer with a certain
lapse rate can travel until their potential energy is fully con-
verted into kinetic energy. It turns out that this yields the same
expression as the parametrisation of dissipation by internal grav-
ity waves: their contributions may differ in magnitude, but their
functional form remains the same.

Hence, Canuto et al. (1994) suggested that this term should
indeed be added to the standard form of Eq. (9). As they pointed
out, this contribution also allows to maintain stationarity in
homogeneous, stratified turbulence as confirmed by data from
direct numerical simulations of shear turbulence by Holt et al.
(1992). Thus, Canuto et al. (1994) suggested c3 = 0.3 for sta-
bly stratified layers and c3 = 0 elsewhere to complete Eq. (11).
Canuto & Dubovikov (1998) followed that proposal.

Clearly though, among all the parametrisations which appear
in Eq. (11), c3 ε Ñ remains the most uncertain one, but yet it is
also crucial. Its choice requires to be tested carefully. Otherwise,
the width of convective overshooting may turn out to be sensitive
to the detailed calibration of its parameters. In Appendix B we
discuss more recent suggestions to further improve the physical
content of Eq. (11).

A96, page 4 of 17



F. Kupka et al.: Turbulent convection for stellar evolution

3. A new model for the dissipation rate in non-local
convection models in GARSTEC

3.1. The problem: Overshooting zones of convective cores
growing unlimitedly during main-sequence stellar
evolution

The Garching Stellar Evolution Code (GARSTEC; see
Weiss & Schlattl 2008) offers several models to compute the
contributions of convection to energy transport and mixing in
stellar evolution calculations (including those of Böhm-Vitense
1958; Canuto & Mazzitelli 1991; Kuhfuß 1987). In partic-
ular, the model of Kuhfuß (1987) has been implemented
(Flaskamp et al. 2002; Flaskamp 2003) in GARSTEC both in
its 1-equation version, i.e. with an additional differential equa-
tion for turbulent kinetic energy, K, and in its full, 3-equation
version (Kuhfuß 1987; for a brief discussion of this model see
Appendix A). The latter features differential equations for the
TKE, the squared fluctuations of entropy, Φ, and for the turbu-
lent flux of entropy fluctuations, Π. Those three equations are
essentially equivalent to the dynamical equations for the TKE,
the squared fluctuations of temperature θ2, and for the cross cor-
relation between velocity and temperature fluctuations, denoted
here by J = wθ. The latter can be derived from the phyically
more complete model of Canuto & Dubovikov (1998) by assum-
ing (i) an isotropic velocity distribution, (ii) a local prescription
to compute the distribution of the dissipation rate ε, (iii) the
diffusion approximation for the non-local fluxes, and (iv) some
minor simplifications in the closures used in the dynamical equa-
tions6. As a variant, the 3-equation model may be used with local
limit expressions for the non-local transport terms for θ2 as well
as J. As a theoretical analysis shows (see Kupka et al. 2020 and
references therein) only a full 3-equation model can feature a
countergradient or ‘Deardorff’ layer where J is positive, while
the superadiabatic gradient β is negative. Only in such a model
both quantities can change their sign independently (the key to a
positive convective flux in a countergradient stratification is the
non-local transport of θ2 as originally shown by Deardorff 1961,
1966). However, in both the fully non-local and the local limit
of the 3-equation model variant as described above, overshoot-
ing gradually mixes the entire star in a stellar evolution calcula-
tion for a 5 solar mass (B-type) main-sequence star. In Fig. 1 we
show the profile of the TKE as a function of fractional mass in
this calculation. It can be seen that the energy extends substan-
tially beyond the Schwarzschild boundary, reaching very close
to the surface of the star. Due to the high efficiency of convec-
tive mixing the whole star would become essentially homoge-
neous which is unrealistic, because the star would evolve from
the hydrogen to the helium main-sequence, i.e. to the left in
the colour-magnitude diagram, contrary to all observations (see
Kippenhahn et al. 2012, Chap. 23.1). This problem was origi-
nally identified in the PhD thesis of Flaskamp (2003).

To solve this problem Flaskamp (2003) suggested to give
up the assumption of isotropy of TKE of the model of Kuhfuß
(1987) in the overshooting (OV) zone and let the ratio of vertical
to horizontal kinetic energy tend to zero. This limits the mix-
ing efficiency in the outer layers of the OV zone, located above
the stellar convective core, and avoids its unphysical growth
throughout main-sequence evolution. If this simulation were
plausible, also a more realistic model for the anisotropy of the

6 Entropy gradients in turn are numerically easier to compute than the
small differences between temperature and adiabatic temperature gradi-
ents during stellar evolution calculations.
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Fig. 1. TKE as a function of the fractional mass for the original Kuh-
fuß model. The formal Schwarzschild boundary, defined by ∇rad = ∇ad,
is indicated by a dashed black line.

convective velocity field, derived, for instance, from the station-
ary limit of Eq. (19d) of Canuto & Dubovikov (1998), should
solve this problem. Both variants of this approach are discussed
below in Sect. 4.1.

3.2. A comparison with a fully non-local Reynolds stress
model

A progressive growth of the overshooting zone with time is not
observed in 3D radiation hydrodynamical simulations of over-
shooting in DA white dwarfs (Kupka et al. 2018) either. Since
the extension of the different zones in that case (Schwarzschild
unstable convective zone with J > 0 and β > 0, countergra-
dient region with J > 0 and β < 0, plume dominated region
with J < 0 and β < 0, and wave dominated region with J ≈ 0
and β < 0) compare quite well with results from the non-local
Reynolds stress model of Canuto & Dubovikov (1998) solved
in Montgomery & Kupka (2004) for the same type of stars, the
latter can provide a guideline for the behaviour of variables
such as ε as a function of depth. The overall structure of the
OV zones and the behaviour of the convection related variables
described in Montgomery & Kupka (2004) is very similar to that
one which had already been found for A-type main-sequence
stars in Kupka & Montgomery (2002) which in turn had been
found in qualitative agreement with earlier 2D radiation hydro-
dynamical simulations of Freytag et al. (1996).

We hence use the Reynolds stress convection model cal-
culations of Kupka & Montgomery (2002) in Fig. 2 to illus-
trate the convective flux, the root mean square vertical velocity,
and the dissipation rate as a function of depth. The left pan-
els show results for the full third order moment model while
the right panels show results computed using the downgradient
approximation (for the latter cf. also Appendix A.3). For Teff =
8000 K and a log g value slightly below the main sequence (see
Kupka & Montgomery 2002 for further details) we find two con-
vective zones, an upper one due to ionisation of neutral hydrogen
and a lower one caused by double-ionisation of helium. They
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Fig. 2. Left panels: convective flux in units
of total flux, root mean square vertical veloc-
ity in units of km s−1, and dissipation rate ε
from Eq. (11) relative to a value computed
from Eqs. (5) and (6) with α as given in
the figure legend. Right panels: same quan-
tities as left panels, however, the downgradi-
ent approximation (DGA) is used to compute
third order moments instead of the full model
used in Kupka & Montgomery (2002). The
results are for one of the A-star envelope
models discussed in Kupka & Montgomery
(2002).

are connected by an overshooting region at a radius of ∼931 Mm
and there is another overshooting region underneath the lower
convective zone at ∼926.5 Mm. For this setting we compare the
computation of dissipation rates from Eq. (11), the full equation
of Canuto & Dubovikov (1998), with the standard mixing length
prescription for a range of bulk convective and overshooting lay-
ers. Clearly, the dissipation rate ε becomes much larger than the
value computed from the MLT prescription as soon as the plume
region of the OV zones (with J < 0 and β < 0) is reached, and
which can be determined from the behaviour of the convective
flux. At the bottom of the lower overshooting zone, ε becomes
even order(s) of magnitudes larger than the oversimplified MLT
prescription would predict. Note that if the downgradient (dif-
fusion) approximation is used to compute third order moments
such as q2w in the model of Canuto & Dubovikov (1998; the
non-local fluxes of K, J, θ2, and w2), a smaller overshooting is
obtained in comparison with the complete third order moment
model used in Kupka & Montgomery (2002). Hence, the two
convection zones become separated at Teff = 8000 K which
allows observing this behaviour of ε even between the two con-
vective zones. At lower Teff , for example at 7500 K, convection
and overshooting are stronger also for the downgradient approxi-
mation of third order moments and the same behaviour is recov-
ered as for the physically more complete third order moment
model at Teff = 8000 K. For that latter model the two con-
vective zones become more tightly coupled and the increase of
ε compared to the MLT prescription is eventually restricted to

the lower overshooting zone only, for instance, for models with
Teff = 7200 K.

We hence can draw the following conclusions from solutions
of the Reynolds stress model of Canuto & Dubovikov (1998) for
convective envelopes of A-type stars: irrespective of the vari-
ous situations described above, deep inside the plume-dominated
region characterised by J < 0 and β < 0 the MLT prescrip-
tion to compute ε begins to fail by entirely missing out the dras-
tic increase in dissipation in that region. However, the proper
computation of ε is essential to determine the extent of the mixed
region, since it drains kinetic energy from the overshooting flow.
From Eq. (5) one can immediately conclude that underestimating
ε in the MLT framework can be easily caused by overestimating
the mixing length Λ or `0.

3.3. Reducing the mixing length in the OV zone

There is also a physical argument why the mixing length must
be limited and even gradually shrink in the OV zone on top
of a stellar convective core. Taking Λ to be about a pressure
scale height at the convective core boundary results in a very
large length scale. This is essentially the size of the convec-
tive core itself. The claim that such a large structure penetrates
into the radiative zone makes no sense, both from the view-
point of available potential energy and from the viewpoint of
the typical size of a convective structure. We note here that
existing numerical simulations of convective cores are actually
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Fig. 3. Dissipation rate as a function of fractional mass for the orig-
inal Kuhfuß model and the Kuhfuß model including an ad hoc expo-
nential decay of the dissipation length, shown with a grey dotted and
a blue continuous line, respectively. The ad hoc exponential decay of
the dissipation length leads to an increased dissipation rate at the begin-
ning of the overshooting zone, indicated by the local maximum beyond
the Schwarzschild boundary, followed by a sharp drop due to the rapid
decay of TKE. The models have been chosen to have the same maxi-
mum TKE.

for extremely different physical parameter regimes, featuring
mostly Pr & 1 or even Pr � 1 (see, for instance, Rogers et al.
2013; Rogers 2015; Edelmann et al. 2019a). They are unable
to reproduce the very small levels of superadiabaticity (β > 0,
but |β/(∂T/∂r)ad| � 1) at realistic stellar luminosities. This
inevitably leads to excessive numerical heat diffusion and unreal-
istically small effective Peclet numbers (see Kupka & Muthsam
2017 for a discussion). Numerical simulations of convective
cores may hence also be affected by the convective conun-
drum problem reported for the Sun (cf. Gizon & Birch 2012;
Hanasoge et al. 2016). Probably, they are not as reliable for
guiding us as numerical simulations are in the case of convec-
tive overshooting near stellar surfaces (cf. Freytag et al. 1996;
Tremblay et al. 2015; Kupka et al. 2018, and many others). We
return to the problem of comparing results on convective cores
from stellar evolution models with 3D hydrodynamical simula-
tions of convective cores in Sect. 4.3. In the following, we thus
use a different chain of arguments to derive an improved estimate
of Λ.

As a very first step, one could let Λ decay to zero within the
OV zone, either linearly or exponentially, from the value it has at
the boundary of the convective zone. This ad hoc ‘fix’ has been
implemented into GARSTEC. The exponential decay model was
chosen and indeed this easily stops the growth of the overshoot-
ing zone as a function of stellar evolution time. The enhanced
dissipation rate introduced this way can be seen in Fig. 3 at the
outer edge of the convective region. The model including the
exponential decay has a central hydrogen abundance of 0.6. The
stellar model computed with the original Kuhfuß model was cho-
sen to have the same maximum TKE in the convection zone to
make the dissipation rates comparable.

Physically plausible extensions of the OV zone can be
obtained from a “reduction factor”, which forces an e-folding
extent of the “decay” of the mixing length of 2% to 6% of
the mass of the Schwarzschild-unstable region. In a 5 M� main-
sequence star this limits the OV zone to contain about 12% to
29% in terms of the Schwarzschild core mass. The relative extent
of the overshooting region in terms of the Schwarzschild core
mass remains mostly constant along the main-sequence. For an
e-folding extent of 4% the overshooting region contains about
5% of the stellar mass at the beginning of the main-sequence
while it is shrinking to about 2% of the total mass at the end
of the main-sequence. The procedure introduces a free parame-
ter, but it is sufficient as a proof of concept: a physically more
complete model of ε constrains the OV contrary to earlier, alter-
native explanations that require unphysical parameter values to
do so (such as w2/K → 0 which is at variance with Kupka et al.
2018, see Sect. 4.1 below).

3.4. Boundary conditions and regularity constraints

As a prerequisite to derive an improved estimate for Λ, we first
discuss its asymptotic behaviour in the centre of a convective
core. Regularity properties of non-local models of convection at
the centre of stellar cores are a rather delicate issue which has
been analysed in Roxburgh et al. (2007b). Under the assumption
that non-zero convective motions can also occur at the centre of
a convective core, for the second order moments they demon-
strated that w2, K, and θ2 are all positive and have an even order
expansion in r just like the gas pressure P. Moreover, from their
Eq. (11), the horizontal component of TKE has to balance the
vertical component in the sense that v2

r = v2
θ = v2

φ for the veloc-
ity components in spherical polar coordinates (r, θ, φ). Hence,
w2/K = 2/3 and the flow is isotropic. Clearly, also ε has to be
positive in this case.

Thus, if the relation ε = cεK3/2/Λ is used, a positive Λ
guarantees positivity of ε. An appropriate prescription which
ensures this property is to use the curvature of the pressure
profile to define a local scale height, since its gradient van-
ishes at the centre. This has been worked out in Roxburgh et al.
(2007a) where the scale height at the centre is defined from
H2

c = −P/(∂2P/∂r2) = 2rHp = 3Pc/(2πGρ2
c) and the sub-

script c denotes the value of the local scale height, Hc, of pres-
sure, Pc, and density, ρc, at the centre (and G is, of course, the
gravitational constant). For the centre, Λ = αHc and in general
Λ = αmin(Hp,Hc). Roxburgh et al. (2007a) suggest a smooth
interpolation between the limit at the core centre and the expres-
sion for Hp � Hc.

For reasons of regularity and energy conservation, Fconv → 0
at the centre in that case, which is fulfilled by the above prescrip-
tion of the mixing length. An expansion in odd powers of r is
found for the Reynolds stress equation for J and thus for Fconv
(Roxburgh et al. 2007b). This implies non-trivial constraints on
closures for the third order moments. Roxburgh et al. (2007b)
demonstrate that the downgradient closure forces the core centre
to be convectively neutral (J ∝ r3 instead of J ∝ r) while other
closures have to be modified to ensure regularity of the solution.

In GARSTEC, the Wuchterl (1995) prescription for Λ is used
by default. This requires a different approach at the core cen-
tre, as it assumes Λ → 0 for r → 0. Thus, in GARSTEC, it
is ensured by power series expansions that the convective vari-
ables are not forced to zero while the temperature gradient at the
centre is the adiabatic one. As a result, the convective quantities
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become small in the central region (see Paper II). It is hence
important to clarify whether the differences between these two
rather different prescriptions for the convective variables in the
centre of a convective core are relevant for applications. Fortu-
nately, it turns out that they remain constrained to less than the
innermost 10% of the stellar core. In either case, the stellar core
is predicted to be fully mixed and has a temperature gradient
close to the adiabatic one. For this study, we hence prefer to stay
within the standard setup used for GARSTEC, i.e. we start from
the prescription for Λ proposed by Wuchterl (1995).

3.5. Some input from the dissipation rate equation

We now show how it is possible to carry over some of the physics
contained in Eqs. (9) or (11) into a local model for ε and still
avoid the solution of an additional differential equation. If we
model the non-local transport of TKE in Eq. (8) by a downgra-
dient approximation, the closure wε = (3/2)τ−1 Fkin relates wε
to ∂zw2 in Eq. (11). The same behaviour is found for a direct
downgradient closure for wε (i.e., computing it from ∂zε) as for
example Eq. (10). Let us hence assume a local approximation
for D f (ε), the non-local flux of ε, which replaces the deriva-
tives of the outer divergence operator and the gradient operator in
Eq. (11) by a product of reciprocal length scales, 1/`2. Inspect-
ing Eq. (11), for the sake of simplicity, it appears desirable to
model as many contributions as possible by expressions of type
ε2/K ∝ ε/τ. Instead of a diffusion length scale (`) we hence
use the characteristic transport time scale τ = 2K/ε to approx-
imate D f (ε) ∝ −αεε/τ. The same can be done also in the case
of Eq. (9). If we furthermore assume the local limit of Eq. (8),
P = Pb = ε, i.e. production of TKE by buoyancy equals its dis-
sipation, and if we also assume c3 = 0, we obtain the following
approximation for both Eqs. (9) and (11):

−αεε/τ = 2 c1gαJ/τ − 2 c2ε/τ. (12)

To remain consistent with gαJ = ε we have to require that αε =
2c2 − 2c1 if ε itself is computed from Eqs. (5)–(6). In this case
we obtain a completely local model for the computation of ε.

We can use Eq. (12) to understand some implications from
the different physical contributions which its physically more
complete counterpart, Eq. (9), would instead account for. To this
end let us relax the requirement Pb = ε in Eq. (8) somewhat. In
this case, whether the 1-equation or the 3-equation version of the
Kuhfuß (1987) model is used (cf. Appendix A), due to the non-
locality of the flux of kinetic energy in Eq. (8), ∂z(q2w/2) , 0,
there is always a point where J = 0 (cf. Chap. 5 in Kupka et al.
2020). At such a point, αε = 2c2 is required from Eq. (12) for
a non-vanishing dissipation rate ε. Right next to such a point,
where ε > 0 with J < 0, a value of αε > 2c2 would be required
whereas αε < 2c2 where J > 0. So αε would have to be a func-
tion that has to be fine-tuned to obtain consistent results from
Eq. (12) in the vicinity of J = 0. Moreover, because of the
downgradient closure for wε also constraints on w2/K would be
imposed.

Such constraints appear unphysical: Eq. (12) does not pro-
vide a good starting point for a local model capable to capture at
least the main gist of either Eq. (9) or Eq. (11). To proceed we
need a physically more complete model for ε, i.e. we either have
to abandon the mixing length prescription altogether or we need
a more complete model equation than Eq. (9) to start from. Let
us hence first have a look at Eq. (11), i.e. we no longer impose
c3 = 0 everywhere. The sibling of Eq. (12) which accounts for
the production of dissipation by gravity waves in stably stratified

fluid then reads:

−αεε/τ = 2 c1gαJ/τ − 2 c2ε/τ + c3εÑ. (13)

If we were to combine this equation with the 1-equation model
of Kuhfuß (1986), β and J change sign at the same point so the
perfect balancing constraint between D f (ε) and −2 c2ε/τ reap-
pears. In the region where J < 0, more freedom of how D f (ε)
behaves is permitted. This changes once we switch to the 3-
equation model of Kuhfuß (1987): since β and J then change
sign at different locations, αε is no longer forced by c2 at any
point. In the end, the c3εÑ contribution decouples both D f (ε)
and w2/K from peculiar constraints required to be fulfilled at
where β = 0 or where J = 0.

On the other hand, now there is an efficient local source
for ε also where β < 0. This is particularly important for the
3-equation model which through its countergradient layer per-
mits much larger enthalpy (and hence also TKE) fluxes in this
region: considering that property it is understandable that the 3-
equation model can be prone to large overshooting, unless the
latter is limited by efficient dissipation. And this is just what
gravity waves can provide.

3.6. Deriving a local model for ε with enhanced dissipation

For the sake of physical completeness it would be preferable to
switch to Eq. (11) and give up the local model Eqs. (5)–(6) alto-
gether. However, as a first step into that direction we can aim at
modifying the computation of Λ for the stably stratified layers
by guiding the necessary physical input through Eq. (11) and in
particular through its local approximation, Eq. (13). In a local
framework we cannot accurately account for D f (ε). Hence, we
first express τ in terms of Λ in the local limit,

ε =
2K
τ

= cε
K3/2

Λ
, (14)

from which we obtain that

τ =
2
cε

Λ

K1/2 . (15)

To proceed we can now rewrite c3εÑ as follows:

c3εÑ = c3
ε

τb
= 2 c3

K
τ τb

. (16)

Following the analysis in the previous subsection we now com-
pare Eq. (16) with

−c2
ε2

K
= −2 c2

ε

τ
. (17)

In the stationary, local limit and assuming that we can absorb the
contribution from αεε/τ+2 c1gαJ/τ into −2 c2ε/τ for sufficiently
small J and wε we obtain from Eqs. (13), (16), and (17) that

c3/τb

2 c2/τ
=

c3

2 c2

τ

τb
≈ 0.078125

τ

τb
=

25
320

τ

τb
≈ 1, (18)

where the numerical value is obtained from setting c2 = 1.92 and
c3 = 0.3. Contributions absorbed into the −2 c2ε/τ term could
be accounted for by small change of c2. As inspection of the full
Reynolds stress models solved in Kupka & Montgomery (2002)
demonstrates this is well justified since the two terms compared
in Eq. (18) completely dominate where J < 0.
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Fig. 4. Ratio of τ/τb as a function of
convective stability from a solution of
the non-local Reynolds stress model
as presented in Kupka & Montgomery
(2002) assuming the downgradient
approximation for third order moments.
The time scale τb is computed from
Ñ−1 where the absolute value of β is
taken. Sign changes are hence indicated
by spikes. Both the overshooting zones
below and above the lower and the
upper convectively unstable zone show
the same increase of τ/τb from 0 to
more than 10 (the finite grid resolution
prevents τ/τb from becoming actually
zero).

This motivates the idea to also scale Λ, which according
to Eq. (15) is proportional to τ, by a contribution ∝ 25

320
τ
τb

. In
GARSTEC the mixing length required for the turbulent convec-
tion model of Kuhfuß (1987) is computed following the prescrip-
tion of Wuchterl (1995),

1
Λ

=
1

αHp
+

1
βs r

, (19)

where βs is a factor chosen to be 1 in convectively unstable lay-
ers, where β = −(dT/dr − (dT/dr)ad) > 0 and thus ∇ − ∇ad > 0,
and βs is possibly less than 1 elsewhere. We now account for the
effect of enhanced dissipation by gravity waves through reducing
βs to values less than 1. To this end we can interpolate between
the two asymptotic cases Ñ → 0 and Ñ = τ−1

b � τ−1 through

βs = (1 + λs Ñ)−1 for Mr > Mschw (20)

where Mschw is the mass of the convectively unstable core and
thus identifies the mass shell for which ∇ = ∇ad and λs is
a model parameter. Comparisons with solutions of the non-
local Reynolds stress model of Canuto & Dubovikov (1998) for
A-type stars (Kupka & Montgomery 2002) show that τb ≈ 0.1 τ
where Fconv reaches its negative minimum. This range of val-
ues for τb is what we also expect from Eq. (18) for a moderate
variation of c2.

The results of Kupka & Montgomery (2002) can hence pro-
vide a rough guideline for the choice of λs and imply that Λ
is rapidly reduced by an order of magnitude already within the
countergradient region from the value it has at the Schwarzschild
stability boundary (see Fig. 4). This value is then maintained
throughout the remainder of the countergradient region and the
entire region where Fconv < 0, in agreement with the τ Ñ = O(1)
suggested by Canuto (2011c) in his Eq. (5h). The preceding
arguments and the analysis in the previous subsection show how
this relation is connected with the full Eq. (11) and how this
result can be implemented into a physically motivated reduc-
tion factor for the mixing length through Eqs. (19) and (20).
Since the rough constancy of τ/τb (or the “dominance” of the
term c3εÑ in Eq. (11)) also causes the linear decay of the root

mean square velocity as a function of distance in the results
of Kupka & Montgomery (2002) and Montgomery & Kupka
(2004), and because the latter has also been recovered from 3D
radiation hydrodynamical simulations (Kupka et al. 2018) for
just those layers, the entire procedure is at least indirectly sup-
ported by this physically much more complete modelling. Simi-
lar results are not yet available for convective cores, however.

In spite of its simplicity the disadvantage of Eq. (20) is the
fact that λs is a dimensional parameter. It hence has to be deter-
mined separately for each stellar evolution model by numerical
experiments which yield the value it has to have for a sufficient
reduction of Λ by an order of magnitude. For stars of differ-
ent mass this may have to be changed and for modelling later
stages of stellar evolution it is even less convenient. What we
need instead here is an estimate for τ. Without solving Eq. (11)
this is akin to a hen and egg problem, since in the end this would
require just the quantity Λ we are up to compute: λs = (25/320) τ
with τ computed from Eq. (15). We could simplify this by set-
ting τ = (2/cε)(αHpK−1/2) or τ = (2/cε)(rK−1/2), as this formula
is to be used only for r > 0 and Hp < ∞ anyway. However, this
has the disadvantage that near the outer edge of the overshooting
zone where K → 0 one obtains τ → ∞. From standard calcu-
lus applied to Eq. (19) we then obtain that Λ ≈ αHp right there
which is exactly not what we want. But we can rewrite Eq. (20)
into

βs = (1 + c4ΛK−1/2Ñ)−1 for Mr > Mschw (21)

with

c4 =
c3

2 c2

2
cε
≈

25
320

2
cε
≈

5
32cε

= 0.19659 ≈ 0.2, (22)

for which we have used cε = π(2/(3 Ko))3/2 ≈ 0.7948 ≈
0.8 with Ko = 5/3 from Canuto & Dubovikov (1998)7.

7 If we used the value of cε ≈ 2.18 suggested in Kuhfuß (1987) we
would instead obtain that c4 ≈ 0.07. However, in the product cεK3/2/Λ
the constant cε to some extent cancels out, hence, the overshooting dis-
tance is only weakly depending on this parameter. We discuss this fur-
ther in Appendix B of Paper II.

A96, page 9 of 17



A&A 667, A96 (2022)

This is achieved by realising that λs Ñ = c4ΛK−1/2 Ñ =
((2c3)/(2c2cε)ΛK−1/2 Ñ = (c3/(2c2))τ−1

b (2/cε)ΛK−1/2 =

((c3/τb)/(2c2/τ)) · (2ΛK−1/2/(τcε)) = (c3/(2c2)) · (τ/τb)) which
is just Eq. (18) and where we have used Eq. (15) for the last
step. Equation (21) is equivalent to Eq. (20) and also interpo-
lates between the two asymptotic cases, the transition between
locally stable to unstable stratification (Ñ → 0) as well as the
overshooting region far away from the convective zone, where
flow motions are dominated by waves (Ñ = τ−1

b � τ−1). Equa-
tion (19) combined with Eqs. (21)–(22) can be rewritten into
a quadratic equation for Λ for which the positive branch can
be taken or which can be solved implicitly, for instance, by an
iterative scheme (the former will be done in Paper II). In prin-
ciple, the parameter c4 could be adjusted to achieve the goal
of τb ≈ 0.1 τ or rather Λ(min(Fconv)) ≈ 0.1Λ(Mr = Mschw)
which mimics the result discussed in Fig. 4 and in the previous
paragraphs. However, we prefer to assume sufficient generality
of Eq. (11) and its parameters and therefore use them without
further adjustments. Some numerical experiments on the effects
of varying c4 can be found in Appendix B of Paper II. In the
next section we show that this procedure also leads to a finite
overshooting layer which does not (notably) grow during stellar
evolution.

4. Discussion: Kuhfuß 3-equation model with
enhanced dissipation

4.1. Flow anisotropy instead of enhanced dissipation

A very important difference between the Kuhfuß (1987) and the
Canuto & Dubovikov (1998) model is the set of convective vari-
ables considered. In addition to the TKE Canuto & Dubovikov
(1998) also solve for the vertical TKE. This means that the
ratio of w2/K is not fixed a priori but is an outcome of the the-
ory. Kuhfuß (1987) on the other hand assumes full isotropy in
the whole convection zone which translates to a fixed ratio of
w2/K = 2/3. Furthermore, the Kuhfuß model uses an isotropic
estimate of the radial velocity vradial =

√
2/3ω in the non-local

terms. Hence, these terms are potentially overestimated by over-
estimating the ratio of vertical to total kinetic energy. This could
result in an unreasonably large overshooting zone. The treatment
of the flow anisotropy is especially problematic at convective
boundaries where the flow turns over. In the convective bound-
ary layers the motions change from being predominantly radial
to becoming predominantly horizontal. This means that the ratio
of vertical to total kinetic energy should drop from the isotropic
value to smaller values.

To study the impact of anisotropy we mimic the change of
the flow pattern by introducing an artificial anisotropy factor
ξ2 = w2/K. This anisotropy factor is set to a value of ξ =

√
2/3

in the bulk of the convection zone and then linearly decreases to
a value of zero from the Schwarzschild boundary outwards. This
is most probably not a very physical behaviour but just meant
for illustrative purposes. The profile of this artificial anisotropy
factor is shown in the upper panel of Fig. 5. The profile of the
TKE computed with this anisotropy factor is shown in the lower
panel of the same figure. The black dashed line indicates the
Schwarzschild boundary. It can be seen that an overshooting
zone beyond the Schwarzschild boundary emerges, which has,
however, a clearly limited extent. As intended, a limitation of
the anisotropy could solve the problems observed with the orig-
inal version of the 3-equation model. The description requires
another free parameter which is the slope of the linear function.
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Fig. 5. Artificial anisotropy factor ξ and TKE as a function of fractional
mass in the upper and lower panel, respectively. The black dashed line
indicates the Schwarzschild boundary.

The slope parameter directly controls the overshooting distance
which is very similar to other ad hoc descriptions of convective
overshooting. Also, the functional form of ξ has not been deter-
mined by physical arguments but has been chosen arbitrarily.

This unfavourable situation should be avoided by a physi-
cally motivated estimate for the anisotropy factor. This requires
to compute the vertical kinetic energy. To obtain an esti-
mate of the distribution of the turbulent kinetic energy in the
Kuhfuß (1987) model we start from the fourth equation of the
Canuto & Dubovikov (1998) model:

∂

∂t
1
2
w2 + D f

(
1
2
w2

)
= −

1
τpv

(
w2 −

2
3

K
)

+
1
3

(1 + 2β5)gαJ −
1
3
ε

(23)

which solves for the vertical turbulent kinetic energy w2. Not
solving for w2 implies that also D f

(
1
2w

2
)

is unknown. A rea-
sonable way to compute this quantity from the Kuhfuß (1987)
model is again to assume an isotropic distribution of the fluxes:
D f

(
1
2w

2
)

= 1
3 D f (K). By rearranging and neglecting the time-

dependence in Eq. (23) we can define an anisotropy factor:

w2

K
=

2
3
−
τpv

K

(
1
3

D f (K) −
1
3

(1 + 2β5)gαJ +
1
3
ε

)
(24)

All quantities in Eq. (24) can be computed within the Kuhfuß 3-
equation model.

We have computed the anisotropy factor according to
Eq. (24) for a stellar model which used the original version of
the Kuhfuß 3-equation model. The result is shown in Fig. 6. In
the bulk of the convection zone within the Schwarzschild bound-
ary the estimated anisotropy points towards a radially dominated
flow. Directly beyond the Schwarzschild boundary the estimated
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Fig. 6. Estimate of the anisotropy factor according to Eq. (24) for a 3-
equation model without limited dissipation length-scale Λ. The profile
of the turbulent kinetic energy of this model is shown in Fig. 1.

anisotropy factor drops below the isotropic value of 2/3. This can
be attributed to the negative convective flux in the overshooting
zone which according to Eq. (24) reduces the ratio of vertical
to total kinetic energy. Further out in mass coordinate the esti-
mated anisotropy increases again slightly above a value of 2/3
and remains to a good approximation constant over the region in
which positive kinetic energy is observed (see Fig. 1).

Introducing this anisotropy factor into the Kuhfuß 3-equation
model would not substantially reduce the estimate of the radial
velocity. On the contrary, over large parts of the model the value
of the radial velocity would be even larger than the current esti-
mate as we find an anisotropy factor above the isotropic value
of 2/3. To finally settle the question of the flow anisotropy in
Reynolds stress models one also has to solve the respective equa-
tion for the vertical kinetic energy (Eq. (23) shown here, as taken
from the Canuto & Dubovikov 1998 model) self-consistently
coupled to the non-local convection model. However, since such
a more realistic anisotropy factor cannot resolve the problem
of excessive mixing found in the original Kuhfuß 3-equation
model and because its implementation as an additional differen-
tial equation increases the complexity of the model, we first per-
form a thorough analysis of the improved 3-equation model in
Paper II and postpone the extension of this new model to future
work.

4.2. Dissipation in the Kuhfuß 1- and 3-equation model

We have implemented the enhanced dissipation mechanism,
developed in Sect. 3.6, into GARSTEC. For the details of the
implementation we here refer to Paper II. With this implemen-
tation we solve the stellar structure equations and the convective
Eqs. (A.4)–(A.6) self-consistently. We note that for consistency
and to simplify the comparison between the 1-equation and the
3-equation model, we set cε = CD (see Appendix A), whence it
follows that c4 ≈ 0.072 in those calculations. As an example we
show here the TKE in a 5 M� main-sequence star in Fig. 7. The
Schwarzschild boundary is indicated with a black dashed line.
In this model the convective energy extends slightly beyond the
Schwarzschild boundary which means that an overshooting zone
emerges consistently from the solution of the model equations.
However, in contrast to Fig. 1 the energy does no longer extend
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Fig. 7. Convective energy as a function of the fractional mass for
the Kuhfuß model including the improved dissipation mechanism. The
Schwarzschild boundary is indicated by a dashed black line.

throughout the whole star but has a clearly limited extent as one
would expect for this kind of star in this evolutionary phase.

This shows already that the enhanced dissipation mechanism
proposed above is able to solve the problems observed in the
original version of the 3-equation Kuhfuß convection model. The
detailed structure and the behaviour of stellar models with dif-
ferent initial masses is discussed in Paper II.

The results obtained from the different versions of the Kuh-
fuß model can be interpreted by studying the individual terms of
the TKE equation (Eq. (A.4)) in more detail. In Fig. 8 we show
the three terms of the TKE equation–buoyant driving, dissipa-
tion and non-local flux–with a corresponding red, black, and blue
line respectively for the 1-equation model (panel a), the original
3-equation model (panel b) and the improved 3-equation model
(panel c).

Stellar models applying the non-local 1-equation theory
posses a clearly bounded convective region with a reasonable
extent. However, this is achieved by suppressing the countergra-
dient layer and artificially coupling the sign of the convective
flux to that one of the superadiabatic gradient.

When using the 3-equation model in its original version
this welcome property vanishes and the stellar models become
fully convective. As discussed in Appendix A the 3-equation
model does not approximate the convective flux by a local model
but rather solves an additional differential equation for it. This
reduces the coupling of the different convective variables. Intu-
itively one would expect this model to be physically more com-
plete than the 1-equation model and to yield physically improved
models (see the discussion in Sect. 5 of Kupka et al. 2020). How-
ever, the stellar models computed with the 3-equation model
look physically unreasonable, as the existence of fully convec-
tive B-stars with 5 M� is excluded from the lack of stars hotter
than the hydrogen main-sequence.

This rises the question why a seemingly physically more
complete model leads to worse results. It can be illustrated by
comparing the TKE terms in the 1- and original 3-equation mod-
els shown in panels a) and b) in Fig. 8. In the 1-equation model
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the buoyant driving term which is proportional to the convec-
tive flux shows negative values in the overshooting zone, which
is expected due to the buoyant braking in the stable layers. The
buoyant term even exceeds the actual dissipation term in magni-
tude. This means that in the 1-equation model it is not the dis-
sipation term but rather the buoyant driving term which acts as
the main sink term in the overshooting zone. When applying the
3-equation model the buoyant term is still negative in the over-
shooting zone. The values are, however, much smaller in mag-
nitude compared to the 1-equation model. The dissipation and
non-local flux term have about the same magnitude in the over-
shooting zone as obtained with the 1-equation model, because
their functional form did not change. Considering that it was the
buoyant driving term which was acting as the main sink term,
the 3-equation model in its original form is lacking a sink term
in the overshooting zone. This naturally explains the excessive
overshooting distance found for this model.

To understand how the dissipation by buoyancy waves can
mitigate this problem it is worth to recall the approximation
for the convective flux in the 1-equation model. Kuhfuß (1987)
has approximated this to be Π ∝ (∇−∇ad). As the convective
flux is the major sink term in the overshooting zone in the 1-
equation model one possibility is to introduce a dissipation term
which has the same dependence, ε ∝ (∇−∇ad). A process with
this dependence would be, for example, the dissipation by buoy-
ancy waves as proposed above. We have demonstrated that the
enhanced dissipation by buoyancy waves reduces the overshoot-
ing distance again to a more reasonable extent for the TKE (see
Fig. 7). The related terms of the TKE equation are shown in
Fig. 8 in panel c). In the overshooting zone the magnitude of
the dissipation term is now substantially larger than the negative
buoyancy term such that it acts as the dominant sink term. Also
the shape of the dissipation profile has changed compared to the
original 3-equation case. The transition from finite to zero values
looks smoother for the improved 3-equation model because the
temperature gradient which has readjusted differs in comparison
with the 1-equation model.

This comparison shows why the original version of the 3-
equation model results in fully convective stars. The fact that a
sink term is missing points again at the importance of a dissipa-
tion term which is proportional to (∇ − ∇ad). On a first glance, a
negative convective flux with larger magnitude in the overshoot-
ing zone could also increase the sink term in the TKE equation.
But the following line of arguments shows that this hypothesis
leads to unplausibly large non-local fluxes.

Here, we consider Eqs. (A.4)–(A.6)8. Let us assume that J
becomes larger, or, equivalently, Π in Eqs. (A.4)–(A.6) becomes
larger in magnitude in the region where it is negative. Then, the
buoyant driving term shown in panel b of Fig. 8 changes towards
more negative values. This permits the dissipation rate of kinetic
energy to become smaller. However, in that case the buoyant
driving term (containing Π) also becomes larger in Eq. (A.6),
which predicts the magnitude of entropy fluctuations.

Since the vertical velocities have to become smaller, when
the dissipation rate of kinetic energy becomes smaller (and we
assume a constant anisotropy in this thought experiment), the
squared fluctuations of entropy, Φ, or of temperature, θ2, have

8 We point out that exactly the same sequence of arguments applies to
the equivalent three equations for the turbulent kinetic energy K = q2/2,
the squared fluctuation of the difference between local temperature and
its Reynolds average, θ2, and the cross correlation between velocity
and temperature fluctuations, J = wθ, as they appear in the model of
Canuto & Dubovikov (1998) and discussed in Kupka et al. (2020).
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Fig. 8. Comparison of the different terms in the TKE equation
(Eq. (A.4)) in the Kuhfuß 1-equation (panel a), original 3-equation
(panel b) and improved 3-equation (panel c) model. The buoyant driv-
ing term, the dissipation term and the non-local flux term are shown
with a red, black, and blue line here.

to become larger instead. But for Π < 0 in the region we con-
sider here, both −Π/τrad and (2∇adT/Hp)Φ act as sources which
are boosted in Eq. (A.5). Unless we would consider a large
rate of change in the non-local transport of convective flux and
entropy fluctuations, the only way to obtain an equilibrium solu-
tion in this model is to increase velocities and thus also the
flux of kinetic energy. This is exactly the solution observed in
panel b of Fig. 8 with its excessively extended overshooting.
The closure used in Canuto (1993) and Canuto & Dubovikov
(1998), which also accounts for buoyancy contributions to the
correlation between fluctuations of temperature and the pres-
sure gradient (the −Π/τrad term in Eq. (A.5)) does not change
this argument. But a scenario that builds up large fluctuations
of entropy in the overshooting region, where radiative cool-
ing should efficiently smooth them while it has to suppress
high velocities, appears unphysical. Thus, this alternative can be
excluded.

Since extensive overshooting, which eventually mixes the
entire B-star, is ruled out by observations, we are left with
flow anisotropy or enhanced dissipation due to the generation
of waves as physical mechanisms to limit overshooting in the
3-equation framework. Because extreme levels of flow
anisotropy are neither found in solar observations nor in numer-
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ical simulations of overshooting in white dwarfs (Kupka et al.
2018), nor in solutions of the model of Canuto & Dubovikov
(1998) for A-stars (Kupka & Montgomery 2002) or white
dwarfs (Montgomery & Kupka 2004), there is hardly evidence
for this idea. On the contrary, the enhanced energy dissipa-
tion rate is contained in the full model of Canuto & Dubovikov
(1998) which yields at least some qualitative agreement with
numerical simulations of several scenarios of stellar overshoot-
ing (see Kupka & Montgomery 2002 and Montgomery & Kupka
2004 and compare with Kupka et al. 2018 for the latter). This
makes the improved computation of the dissipation rate of
kinetic energy the most plausible improvement of the 3-equation
model to remove the deficiency the model has had in its original
version proposed by Kuhfuß (1987).

4.3. Comparing the Kuhfuß 3-equation model with
overshooting models and numerical simulations

Viallet et al. (2015) have reviewed several models suitable for
parametrisation of overshooting above stellar convective cores.
One of them is the model proposed by Freytag et al. (1996)
based on 2D hydrodynamical simulations of thin convective
zones which appear in the atmosphere and upper envelope of
stars. The simulations had to be restricted to low Peclet (Pe)
numbers where highly efficient radiative diffusion competes with
convective energy transport. The simple exponential decay law
for velocity as a function of distance from the convection zone
has been particularly attractive for stellar evolution modelling
and the model is available in most actively used stellar evolu-
tion codes including GARSTEC. As the velocity scales with the
pressure scale height, this model requires an additional cut-off
to prevent diverging overshoot from very small convective cores
as found in stars with less than two solar masses. We discuss
this issue in detail in Paper II. Additionally, Kupka et al. (2018)
have pointed out that within the countergradient and plume
dominated regions of convective overshooting zones exponen-
tial decay rates for velocity work only within a limited spatial
range (see also Montgomery & Kupka 2004). Cunningham et al.
(2019) argued for different decay rates for the plume domi-
nated and the wave dominated regime. Such distinctions are,
however, not made in applications of that model. We refer
to Paper II to a detailed comparsion of convective core sizes
between the Kuhfuß 3-equation model and the exponential over-
shooting model, and here just emphasise that the energy loss of
turbulent flows due to waves is readily built into the improved
Kuhfuß 3-equation model.

Another model, suitable for a higher Pe regime, where pen-
etrative convection due to plumes occurs, is the one originally
suggested by Zahn (1991). When applied to convective cores
his model had to rely on invoking Roxburgh’s integral con-
straint (Roxburgh 1989) for self-consistent predictions which
effectively turns it into a model similar in complexity to the
1-equation model by Kuhfuß (1987). We recall here that the
3-equation model with enhanced dissipation has a built-in
dependence on Pe by accounting for radiative losses in its
dynamical equations. A detailed discussion on the role of Pe
in the 1-equation and 3-equation models can also be found in
Paper II. The latter model is also not subject to the simplifica-
tions made in Roxburgh (1989) concerning the treatment of the
dissipation rate ε.

Finally, for the very high Pe regime of convective entrain-
ment Viallet et al. (2015) considered a model based on estimates
relying on the variation of the inverse buoyancy time scale in the
stably stratified layer next to a convective zone and the kinetic

energy available at the boundary of the convective zone. The
Kuhfuß 3-equation model can also deal with this case since it is
the regime in which heat conduction is negligibly small. Hence,
instead of relying on physically different models which have
not been designed to be compatible among each other, the new
3-equation model can deal with the different regimes discussed
in Viallet et al. (2015) within a single formalism and without the
necessity of fine tuning for these different cases.

Comparing the predictions of the new model with those
derived from 3D hydrodynamical simulations of convection
is more difficult: as already mentioned in Sect. 3.3 they cur-
rently have to be restricted to a different parameter range. In
Kupka et al. (2020) it is explained why the effective (numer-
ical) heat conductivity in the simulations has to be higher
than the physical one which leads to values of Pe several
orders of magnitudes smaller than those found in stars. As the
numerical diffusion of momentum and heat in high Pe simu-
lations have to remain comparable to each other, we have to
expect differences in flow structures and overshooting distances
when compared to the actual, stellar parameter range (see, for
instance, Scheel & Schumacher 2017 and Käpylä 2019). Nev-
ertheless, it is a very important finding for the veracity of
the enhanced Kuhfuß 3-equation model that the 3D simulation
results concerning convective cores by Browning et al. (2004),
Gilet et al. (2013), Rogers et al. (2013), Augustson et al. (2016),
and Edelmann et al. (2019b), among others, and the related
simulations of convective shells by Meakin & Arnett (2007),
all show that convective zones excited by nuclear burning are
subject to convective entrainment and penetration, respectively,
depending on the specific setup, and in each case gravity waves
are excited which extend throughout the radiative stellar enve-
lope. This supports the theoretical analysis of Linden (1975) and
Zeman & Tennekes (1977) for the equivalent scenario in meteo-
rology which led to the non-local dissipation rate equation pro-
posed in Canuto et al. (1994) and generalised to applications in
stellar convection by Canuto & Dubovikov (1998), see Eq. (11),
and which has been the starting point for our investigations we
detail in this paper.

5. Conclusions

The original model by Kuhfuß (1987) was shown by Flaskamp
(2003) to lead to convective overshooting zones on top of con-
vective cores that fully mix the entire object on a fraction of
its main sequence life time. We verified that the ad hoc cure to
reduce the ratio of vertical to total TKE to zero no longer works
once realistic models for that quantity are used. From a physical
point of view the ad hoc cure is hence ruled out as an explana-
tion for this deficiency of the model by Kuhfuß (1987). In this
paper a physically motivated modification of the mixing length
has hence been suggested which takes into account that the dis-
sipation rate of TKE has been underestimated by the original
3-equation model of Kuhfuß (1987). In Paper II we present more
detailed tests of the improved 3-equation model proposed in this
paper based on stellar evolution tracks for A- and B-type main
sequence stars of different masses.

One conclusion from these analyses appears to be that the
minimum physics to obtain realistic models of overshooting lay-
ers require to account for non-locality of the fluxes of kinetic
energy and potential temperature (as intended by Kuhfuß 1987)
and in addition to account for the variation of the anisotropy
of turbulent kinetic energy as a function of local stability and
non-local transport. If the latter is done in a realistic way, it
becomes also clear that a physically more complete model of
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the dissipation rate of TKE is needed. All these features are
already provided by the model of Canuto & Dubovikov (1998)
which in its most simple form accounts for non-locality with
the downgradient approximation (as in the model of Kuhfuß
1987). The present simplification is an attempt to carry over
the most important features of the more complete model by
Canuto & Dubovikov (1998) into the Kuhfuß (1987) model
which is already coded within GARSTEC.

Switching to more complex non-local convection models in
a stellar evolution code is not an easy task. This requires that the
model and its implementation also account for the following:
1. Realistic, mathematically self-consistent boundary condi-

tions. This is taken care of in the current implementation of
the Kuhfuß (1987) model in GARSTEC.

2. A fully implicit, relaxation based numerical solver for the
resulting set of equations. This is fulfilled by GARSTEC
as well. Adding further differential equations always means
some non-trivial work on this side.

3. A stable, monotonic interpolation scheme for the equation of
state. Again this is fulfilled in GARSTEC (Weiss & Schlattl
2008). If this is not fulfilled, β cannot be computed correctly
and any closure depending on its sign becomes uncertain,
since oscillations may be fed into its computation.

4. A robust formulation of the dynamical equations which
avoids cancellation errors introduced through a nearly
perfectly adiabatic stratification. This is realised in the imple-
mentation of the Kuhfuß (1987) model in GARSTEC indi-
cated by the smoothness of the equation terms in Fig. 8.
This can be attributed to the fact that the implementation
uses Eq. (A.7) to compute the temperature gradient instead
of numerical derivatives.
Naturally, as discussed in Ireland & Browning (2018),

in Augustson & Mathis (2019), and in Korre & Featherstone
(2021), among others, rotation and magnetic fields influence
convection and convective overshooting. A path towards includ-
ing rotation in non-local convection models has been investi-
gated by Canuto (1998) and by Canuto (2011a), for example,
but such extensions have to be left for future work: the present
model is only a first step beyond MLT-like models.

If the modified mixing length Eqs. (19) and (20) and even
more so Eq. (19) with Eqs. (21)–(22) turns out to produce
stable, physically meaningfully evolving overshooting zones
with GARSTEC, further tests of this approach are highly war-
ranting. These may also motivate the implementation of fully
non-local Reynolds stress models at the complexity level of
Canuto & Dubovikov (1998) which completely avoid the intro-
duction of a mixing length with all its shortcomings.
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Appendix A: The Kuhfuß convection model

In this appendix we summarise the turbulent convection model
developed by Kuhfuß (1987) who derived dynamical equations
for three of the second order moments to model turbulent con-
vection in the stellar interior: the turbulent kinetic energy, the
turbulent convective flux, and the squared entropy fluctuations.
The (specific) turbulent kinetic energy (TKE) is denoted by K
in the main text. Here, we summarise those equations as used
inside GARSTEC. They model entropy fluctuations instead of
temperature fluctuations. To avoid confusion with other models
and their implementation here we stick to the notation of Kuhfuß
(1987): TKE is denoted byω. The radial component of the turbu-
lent convective flux is written as Π and is computed from entropy
fluctuations, consistent with choosing the squared entropy fluc-
tuations Φ as the third dynamical variable of the system. Hence,
the Reynolds splitting is performed for

u = u + u ′, ρ = ρ + ρ′, s = s + s′, . . .

and the second order moments are computed from

ω = u ′2/2, Π = u ′ · s′r, and Φ = s′2/2.

As for any TCM a number of assumptions and approximations
is required to obtain closed systems of equations that can actu-
ally be applied in stellar structure and evolution models. In the
following we briefly review the key assumptions of the Kuh-
fuß model. By using only the total TKE ω the Kuhfuß (1987)
model is not able to account for a variable distribution of the
kinetic energy in radial and horizontal directions. Instead the
distribution of kinetic energy in radial and horizontal direc-
tions is assumed to be isotropic at all radii, such that one third
of the energy is attributed to each spatial direction. The Kuh-
fuß model further neglects turbulent pressure fluctuations. As
pointed out by Viallet et al. (2013) pressure fluctuations play
an important role for convection in envelopes, hence the Kuh-
fuß model is probably not suited to model envelope convection.
Finally, Kuhfuß (1987) also made use of the Boussinesq approx-
imation. In the current implementation suggested by Flaskamp
(2003) we also neglect effects due to the chemical composition,
e.g. composition gradients.

A.1. Viscous dissipation

In the Kuhfuß model, most terms containing the molecular vis-
cosity are neglected because they are of minor importance com-
pared to competing terms. Only the viscous dissipation term for
the kinetic energy is considered to be non-negligible. Kuhfuß
(1987) models the dissipation of the kinetic energy with a
Kolmogorov-type term (Kolmogorov 1962, 1968):

ε = CD
ω3/2

Λ
, (A.1)

where CD is a parameter. Kuhfuß (1987) suggests a value of
CD = 8/3 ·

√
2/3 to be compatible with MLT in the local limit

of his model.
In the Kolmogorov picture kinetic energy is dissipated

thanks to a cascade through which energy is transferred to
smaller and smaller spatial scales. The rate at which this dissipa-
tion happens is dominated by the largest scales at which energy
is fed into the cascade. In Eq. (A.1) the length-scale Λ refers
to this largest scale of the turbulent cascade. As in the mixing
length theory the length-scale is parametrised using the pressure
scale height Hp and an adjustable parameter α: Λ = αHp. Prob-
lems with this parametrisation are discussed in the main text.

A.2. Radiative dissipation

Convective elements lose energy through radiation. This is con-
sidered in the energy conservation equation by including radia-
tive fluxes as sink terms. In the Kuhfuß equations the radiative
losses finally appear as dissipation terms:

εrad,Π =
1
τrad

Π , εrad,Φ =
2
τrad

Φ,

where Kuhfuß (1987) models radiative dissipation by introduing
the radiative time-scale τrad, which he defines as:

τrad =
cpκρ

2Λ2

4σT 3γ2
R

.

Here, γR is a parameter which Kuhfuß (1987) sets to 2
√

3 ,
again to recover the MLT model in the local limit. Furthermore,
cp refers to the specific heat capacity at constant pressure, κ to
Rosseland opacity and σ to the Stefan-Boltzmann-constant. The
variables T and ρ are temperature and density, as usual in stellar
structure models.

A.3. Higher order moments

The Navier-Stokes equations contain non-linear advection terms.
When constructing the equations for the second order moments
these advection terms give rise to third order moments (TOMs).
These higher order moments are the source of the non-local
behaviour of the convection model. They can be cast into the
form:

Fa =
1
ρ

div( ja) with ja = ρ u ′a,

where a is a second order quantity. The closure of these TOMs
is one of the main challenges of any TCM. Kuhfuß (1987)
closes the system of equations at second order and describes
each TOM using the so-called down-gradient approximation
(e.g., Daly & Harlow 1970; Launder et al. 1975; Xiong 1978;
Li & Yang 2007). In the down-gradient approximation the fluxes
ja are modelled following Fick’s law:

ja = −Da∇a, (A.2)

Da = αaρΛ
√
ω. (A.3)

This approximation is applied for the TOMs appearing in the
equations for ω, Π, and Φ with a = u ′2/2, u ′s′, or s′2/2. The
parameters αa control the impact of the non-local terms. Kuhfuß
(1987) suggests a default value of αω ≈ 0.25. The values for the
parameters αΠ,Φ are calibrated to MLT in a local version of the
Kuhfuß theory. However, no values for the non-local case are
provided.

Alternatively, one could compute the TOMs by deriv-
ing equations for them in the same way as for the second
order moments. This has been shown in Canuto (1992, 1993),
Canuto & Dubovikov (1998), or Xiong et al. (1997), for exam-
ple, and introduces fourth order moments which again have to
be closed.

A.4. Final model equations

The above listed approximations are implemented in the deriva-
tion of the Kuhfuß model. The final set of partial differential
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equations reads:

dtω =
∇adT
Hp

Π −
CD

Λ
ω3/2 − Fω, (A.4)

dtΠ =
2∇adT

Hp
Φ +

2cp

3Hp
(∇ − ∇ad)ω − FΠ −

1
τrad

Π, (A.5)

dtΦ =
cp

Hp
(∇ − ∇ad)Π − FΦ −

2
τrad

Φ, (A.6)

where ∇ and ∇ad refer to the model and adiabatic temperature
gradient, respectively. The substantial derivative is defined as
dt = ∂t + u · ∇. For more details about the derivation we refer
to the original work by Kuhfuß (1987) and Flaskamp (2003).

Using the convective flux from the convection model one
can compute the temperature gradient of the stellar model self-
consistently from

∇ = ∇rad −
Hpρ

krad
Π, (A.7)

with

krad =
4acT 3

3κρ
,

where a and c denote the radiation constant and the speed of
light, respectively. Here, we neglect the kinetic energy flux jω,
which is assumed to be small compared to the convective flux.
Equation (A.7) couples the convection model to the stellar struc-
ture equations. The self-consistent computation of the tempera-
ture gradient allows us to study its behaviour in the overshooting
region. This is an advantage over ad hoc descriptions of over-
shooting in which the temperature gradient is set manually.

Appendix B: Alternatives to improve Eq. (11)

Eq. (11) is heavily parametrised. Canuto et al. (2009) hence dis-
cussed a number of simplified models used in geophysics for the
computation of ε. They are based on modified mixing lengths
which account for physical processes relevant to dissipation.
However, those models are not directly applicable to stellar con-
vection: some of them consider a solid wall as a boundary and
none of them has been designed for the extreme density contrast
of deep stellar envelopes or the peculiarities of convective cores
in massive stars.

As the closures used to derive Eq. (9), which were modelled
on the basis of turbulent channel flows and freely decaying tur-
bulence, may not be universal, they should ideally be obtained
from a more general framework. This approach has been taken
in Canuto et al. (2010) who derived a dynamical equation for
the TKE dissipation rate ε using the general turbulence model of
Canuto & Dubovikov (1996). That requires the spectrum of the
source driving turbulence to be known. For shear-driven flows
power law spectra for the TKE and the Reynolds stress spec-
trum can readily be specified. Note that these concern scales
k < k0, i.e. below the maximum of the TKE spectrum E(k).
In addition, energy conservation is invoked which allows com-
puting the non-local contribution to ε from the flux of turbulent
kinetic energy. That closure was already used in Canuto (1992)
(Eq. (37f)) and the non-local character it introduces into Eq. (11)

was discussed in Sect. 11 of Canuto (1993). It was tested in
Kupka et al. (2007) who found it to be one of the most robust
ones among all the closures suggested for the Reynolds stress
models of Canuto (1992), Canuto (1993), Canuto & Dubovikov
(1998), Canuto et al. (2001), and in Canuto et al. (2009). It spec-
ifies that wε = (3/2)τ−1 Fkin with Fkin = ρ q2w/2. In practice, the
accuracy of this closure is degraded, if q2w can only be computed
from a downgradient approximation, but even in this case it jus-
tifies that Df(ε) can be evaluated from Df(K) which is required
anyway. Hence, Canuto et al. (2010) use the (exact) dynamical
equation for the turbulent kinetic energy and a closure for Fkin
to compute Df(ε). The equivalents of c1 and c2 of Eq. (9) are
obtained from within the model, too. The resulting dissipation
rate equation passes the same tests as the original Eq. (9) for
turbulent channel flow and also two tests concerning the shear
dominated planetary boundary of the Earth atmosphere. Unfor-
tunately, this procedure is currently not feasible for the case of
convection in stars, since this would require accurate knowledge
of the turbulent kinetic energy spectrum over a large range of
scales and as a function of depth throughout the star (see also the
discussions in Gizon & Birch 2012 and Fig. 5 in Hanasoge et al.
2016 on difficulties in modelling the turbulent kinetic energy
spectrum for the Sun).

The dissipation rate equation Eq. (9) has hence remained
part of the Reynolds stress model of Canuto (2011a), whether
for dealing with double-diffusive convection (Canuto 2011b)
or overshooting (Canuto 2011c). The latter paper provides a
detailed discussion of the computation of ε, which considers
Eq. (9) and wε = (3/2)τ−1 Fkin for non-local contributions. The
role of gravity waves as a source of dissipation in the overshoot-
ing zone is emphasised, too. From earlier work of Kumar et al.
(1999), it is concluded in Canuto (2011b) that ε ≈ 10−3 cm2 s−3.
However, as also pointed out in Canuto (2011c), it is unclear how
this result could be applied to overshooting zones other than the
solar tachocline. Thus, in his Eq. (5h), Canuto (2011c) suggests
to use τ Ñ = O(1) to compute τ and hence via τ = 2 K/ε the
dissipation rate ε in the overshooting region. This, however, is
consistent with the claim that the term c3 ε Ñ, neglected in the
explicit form of the ε-equation in Canuto (2011a,b,c), actually
dominates in the overshooting region.

Recalling Kupka & Montgomery (2002) and
Montgomery & Kupka (2004), who had found the term
c3 ε Ñ to dominate the solution of Eq. (11) in their applications
of the Reynolds stress model of Canuto & Dubovikov (1998)
to overshooting in envelopes of A-stars and white dwarfs and
taking into account the confirmation of their results for the
case of a DA white dwarf by 3D radiation hydrodynamical
simulations in Kupka et al. (2018), Eq. (11) is still the physically
most complete model for the computation of ε available at the
moment. It is thus used to guide the considerations in Sect. 3.
Note that the dynamical equation for ε which is discussed here
does not account for physical effects due to compressibility.
Canuto (1997a) has presented several different models to extend
Eq. (11) beyond its solenoidal (incompressible) component εs
and account for a dilation (compressible) contribution εd (cf.
Sect. 14 in that paper). For current modelling in stellar structure
and evolution theory such extensions appear yet too advanced:
the very first step is to give up the MLT approach to compute ε
as specified by Eq. (5)–(6).
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