The 5-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Neutrinos

Eiichiro Komatsu (Department of Astronomy, UT Austin) Neutrino Frontiers, October 23, 2008

WMAP 5-Year Papers

- Hinshaw et al., "Data Processing, Sky Maps, and Basic Results" 0803.0732
- Hill et al., "Beam Maps and Window Functions" 0803.0570
- Gold et al., "Galactic Foreground Emission" 0803.0715
- Wright et al., "Source Catalogue" 0803.0577
- Nolta et al., "Angular Power Spectra" 0803.0593
- **Dunkley et al.**, "Likelihoods and Parameters from the WMAP data" 0803.0586
- Komatsu et al., "Cosmological Interpretation" 0803.0547

WMAP 5-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S. Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

Special
Thanks to
WMAP

Graduates!

- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L. Verde

WMAP at Lagrange 2 (L2) Point

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

- L2 is a million miles from Earth
- WMAP leaves Earth, Moon, and Sun behind it to avoid radiation from them

WMAP Measures
Microwaves From
the Universe

- The mean temperature of photons in the Universe today is 2.725 K
- WMAP is capable of measuring the temperature
 contrast down to better than one part in millionth

How Did We Use This Map?

 $T(\mu K)$

-200

WMAP 5-year

+200

The Cosmic Sound Wave

The Cosmic Sound Wave

• We measure the composition of the Universe by analyzing the wave form of the cosmic sound waves.

~WMAP 5-Year~ Pie Chart Update!

- Universe today
 - Age: I3.72 +/- 0.12 Gyr
 - Atoms: 4.56 +/- 0.15 %
 - Dark Matter: 22.8 +/- 1.3%
 - Vacuum Energy: **72.6** +/- **1.5**%
- When CMB was released 13.7 B yrs ago
 - A significant contribution from the cosmic neutrino background 10

(Universe 380,000 years old)

Seeing Neutrinos in Cosmic Microwave Background

Neutrino Properties in Question

- Total Neutrino Mass, $\sum m_v$
 - Section 6.1 of the interpretation paper
- Effective Number of Neutrino Species, Neff
 - Section 6.2

2mv from CMB alone

- There is a simple limit by which one can constrain $\sum m_V$ using the primary CMB from z=1090 alone (ignoring gravitational lensing of CMB by the intervening mass distribution)
- When all of neutrinos were lighter than ~0.6 eV, they were still relativistic at the time of photon decoupling at z=1090 (photon temperature 3000K=0.26eV).
 - $\langle E_V \rangle = 3.15(4/11)^{1/3}T_{photon} = 0.58 \text{ eV}$
- Neutrino masses didn't matter if they were relativistic!
- For degenerate neurinos, $\sum m_v = 3.04 \times 0.58 = 1.8 \text{ eV}$
 - If $\Sigma m_V \ll 1.8eV$, CMB alone cannot see it

CMB + H₀ Helps

- WMAP 5-year alone: $\sum m_v < 1.3 eV (95\%CL)$
- WMAP+BAO+SN: $\sum_{v} \infty < 0.67eV (95\%CL)$
- Where did the improvement comes from? It's the presentday Hubble expansion rate, H₀

CMB to $\Omega_b h^2 \& \Omega_m h^2$

- I-to-2: baryon-to-photon; I-to-3: matter-to-radiation ratio
- $\Omega_{Y} = 2.47 \times 10^{-5} h^{-2} \& \Omega_{r} = \Omega_{Y} + \Omega_{V} = 1.69 \Omega_{Y} = 4.17 \times 10^{-5} h^{-2}$

Neutrino Subtlety

- For $\sum m_v << 1.8eV$, neutrinos were relativistic at z=1090
- But, we know that $\sum m_v > 0.05eV$ from neutrino oscillation experiments
 - This means that neutrinos are definitely nonrelativistic today!
- So, today's value of $\Omega_{\rm m}$ is the sum of baryons, CDM, and neutrinos: $\Omega_{\rm m}h^2=(\Omega_b+\Omega_c)h^2+0.0106(\Sigma_{\rm m}V/1eV)$

Matter-Radiation Equality

- However, since neutrinos were relativistic before
 z=1090, the matter-radiation equality is determined by:
 - $I+z_{EQ} = (\Omega_b + \Omega_c)h^2 / 4.17 \times 10^{-5}$ (observable by CMB)
- Now, recall $\Omega_{\rm m}h^2 = (\Omega_{\rm b} + \Omega_{\rm c})h^2 + 0.0106(\Sigma m_{\rm V}/1 \, eV)$
 - For a given $\Omega_m h^2$ constrained by BAO+SN, adding $\Sigma_m m_V$ makes $(\Omega_b + \Omega_c) h^2$ smaller -> smaller z_{EQ} -> Radiation Era lasts longer
- This effect shifts the first peak to a lower multipole

\(\Shifting the Peak To Low-I

ullet But, lowering H_0 shifts the peak in the opposite direction. So...

Shift of Peak Absorbed by Ho

- Here is a catch:
 - Shift of the first peak to a lower multipole can be canceled by lowering H₀!
- Same thing happens to curvature of the universe: making the universe positively curved shifts the first peak to a lower multipole, but this effect can be canceld by lowering H₀.
 - So, 30% positively curved univese is consistent with the WMAP data, IF H₀=30km/s/Mpc

Effective Number of Neutrino Species, Neff

- For relativistic neutrinos, the energy density is given by
 - $\rho_{V} = N_{eff} (7\pi^{2}/120) T_{V}^{4}$
 - where N_{eff} =3.04 for the standard model, and T_{ν} =(4/11)^{1/3} T_{photon}
- Adding more relativistic neutrino species (or any other relativistic components) delays the epoch of the matter-radiation equality, as
 - $1+z_{EQ} = (\Omega_m h^2/2.47 \times 10^{-5}) / (1+0.227 N_{eff})$

3rd-peak to zeq

• It is z_{EQ} that is observable from CMB.

• If we fix N_{eff} , we can determine $\Omega_m h^2$; otherwise...

Komatsu et al.

N_{eff}-Ω_mh² Degeneracy

- N_{eff} and $\Omega_m h^2$ are totally degenerate!
- Adding information on $\Omega_m h^2$ from the distance measurements (BAO, SN, HST) breaks the degeneracy:
 - $N_{eff} = 4.4 \pm 1.5 (68\%CL)$

WMAP-only Lower Limit

- \bullet N_{eff} and $\Omega_m h^2$ are totally degenerate but, look.
- WMAP-only lower limit is not N_{eff}=0
 - N_{eff}>2.3 (95%CL) [Dunkley et al.]

Cosmic Neutrino Background

- How do neutrinos affect the CMB?
 - Neutrinos add to the radiation energy density, which delays the epoch at which the Universe became matterdominated. The larger the number of neutrino species is, the later the matter-radiation equality, **Z**_{equality}, becomes.
 - This effect can be mimicked by lower matter density.
 - Neutrino perturbations affect metric perturbations as well as the photon-baryon plasma, through which CMB anisotropy is affected.

CNB As Seen By WMAP

- Multiplicative phase shift is due to the change in z_{equality}
 - Degenerate with $\Omega_m h^2$
- Additive phase shift is due to neutrino perturbations
 - No degeneracy
 (Bashinsky & Seljak 2004)

Cosmic/Laboratory Consistency

- From WMAP(z=1090)+BAO+SN
 - $N_{eff} = 4.4 \pm 1.5$
- From the Big Bang Nucleosynthesis (z=10⁹)
 - $N_{eff} = 2.5 \pm 0.4$ (Gary Steigman)
- From the decay width of Z bosons measured in lab
 - $N_{neutrino} = 2.984 \pm 0.008$ (LEP)

WMAP Amplitude Prior

• WMAP measures the amplitude of curvature perturbations at $z\sim1090$. Let's call that R_k . The relation to the density fluctuation is

$$\delta_{m,\mathbf{k}}(z) = \frac{2k^3}{5H_0^2\Omega_m} \mathcal{R}_{\mathbf{k}} T(k) D(k,z)$$

• Variance of R_k has been constrained as:

Amplitude of curvature perturbations, \mathcal{R} , measured by WMAP at $k_{WMAP}=0.02~\mathrm{Mpc}^{-1}$

Model	$10^9 \times \Delta_{\mathcal{R}}^2(k_{WMAP})$
$\Omega_k = 0$ and $w = -1$ $\Omega_k \neq 0$ and $w = -1$ $\Omega_k = 0$ and $w \neq -1$ $\Omega_k \neq 0$ and $w \neq -1$	2.211 ± 0.083 2.212 ± 0.084 2.208 ± 0.087 2.210 ± 0.084
$\Omega_k = 0, \ w = -1 \text{ and } m_{\nu} > 0$ $\Omega_k = 0, \ w \neq -1 \text{ and } m_{\nu} > 0$ WMAP Normalization Prior	2.212 ± 0.083 2.218 ± 0.085 2.21 ± 0.09

Then Solve This Diff. Equation...

Ignoring the mass of neutrinos and modifications to gravity, one can obtain the growth rate by solving the following differential equation (Wang & Steinhardt 1998; Linder & Jenkins 2003): g(z)=(1+z)D(z)

$$\frac{d^2g}{d\ln a^2} + \left[\frac{5}{2} + \frac{1}{2}\left(\Omega_k(a) - 3w_{\text{eff}}(a)\Omega_{de}(a)\right)\right] \frac{dg}{d\ln a} + \left[2\Omega_k(a) + \frac{3}{2}(1 - w_{\text{eff}}(a))\Omega_{de}(a)\right]g(a) = 0, \quad (76)$$

• If you need a code for doing this, search for "Cosmology Routine Library" on Google 28

Degeneracy Between Amplitude at z=0 (σ_8) and w

Degeneracy Between σ_8 and Σm_{ν}

- Reliable and accurate
 measurements of the amplitude
 of fluctuations at lower redshifts
 will improve upon the limit on
 ∑m_V significantly.
- In fact, what's required is the lower limit on σ_8 .
- Even a modest lower limit like σ₈>0.7 would lead to a significant improvement.

Summary

- WMAP 5-year's improved definition of the 3rd peak helped us constrain the properties of neutrinos, such as masses and species.
 - ullet In particular, we could place a lower bound on N_{eff} using the WMAP data alone confirmation of the existence of the Cosmic Neutrino Background
- With WMAP, combined with the external distance measurements (still excluding the external amplitude data), we have obtained:
 - $\sum m_V < 0.67 \text{eV}$ (95%CL); $N_{\text{eff}} = 4.4 \pm 1.5$ (65%CL)
- Future direction: find a good lower bound on σ_8 from galaxies, clusters, lensing, Lyman- α , etc.