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WMAP 5-Year Papers

Hinshaw et al.,"Data Processing, Sky Maps, and Basic Results™
0803.0732

e Hill et al.,"Beam Maps and Window Functions” 0803.0570
® Gold et al.,"Galactic Foreground Emission” 0803.0715
Wright et al., "Source Catalogue™ 0803.0577

Nolta et al.,"Angular Power Spectra” 0803.0593

Dunkley et al., “Likelihoods and Parameters from the WMAP
data” 0803.0586

¢ Komatsu et al., “"Cosmological Interpretation” 0803.0547
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WMAP 5-Year Science Team o

Thanks to
® C.L Bennett ® M.R.Greason e | L.Weiland WMAP

® G.Hinshaw e M. Halpern e F Wollack Graduates!

® N.Jarosik e RS Hill ® |. Dunkley ® C.Barnes
® S5.5. Meyer o A.Kogut e B. Gold ® R.Bean
® | Page ® M. Limon  E. Komatsu @ O.Dore

® DN.Spergel ® N.Odegard ® D. Larson ® H.V.Peiris
® E| Wright ® G.S.Tucker ® M.R. Nolta ® | Verde
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VWMAP at Lagrange 2 (L2) Point

June 2001:
WMAP launched!

February 2003:

The first-year data
release

March 2006:

The three-year data
release

March 2008: ® |2 is a million miles from Earth

The five-year
data release ® VWMAP leaves Earth, Moon, and Sun

behind it to avoid radiation from them
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WMAP Measures

Microwaves From
the Universe

® The mean temperature of photons in the Universe
today is 2.725 K

® VWMAP is capable of measuring the temperature
contrast down to better than one part in millionth



Hinshaw et al.
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Angular Power Spectrum
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Nolta et al.

The Spectral Analysis
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Angular Power Spectrum
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Nolta et al.

The Cosmlc Sound Wave
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The Cosmic Sound Wave
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® Ve measure the composition of the Universe by
analyzing the wave form of the cosmic sound waves.



Atoms Dark Komatsu et al.
4.6% Tl
Dark S ~WMAP S5-Year~
M .
7% Pie Chart Update!
® Universe today
TODAY ® Age: 13.72 +/=- 0.12 Gyr
® Atoms:4.56 +/- 0.15 %
Neutrinos Dark
10% vover @ Dark Matter:22.8 +/- 1.3%
hotone ® Vacuum Energy:72.6 +/- 1.5%
B ® When CMB was released 13.7 B yrs ago
Atoms ® A significant contribution from the

12% - -
" 137BILLION YEARS AGO cosmic neutrino background 10

(Universe 380,000 years old)



Afterglow Light
Pattern
400,000 yrs.
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about 400 million yrs.

Big Bang Expansion

13.7 billion years

Seeing Neutrinos in Cosmic Microwave
Background

Accelerated Expansion

WMAP
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Neutrino Properties in
Question

® Total Neutrino Mass, ) my
® Section 6.1 of the interpretation paper
® Effective Number of Neutrino Species, Nefs

® Section 6.2
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>my from CMB alone

There is a simple limit by which one can constrain > my
using the primary CMB from z=1090 alone (ignoring
gravitational lensing of CMB by the intervening mass
distribution)

When all of neutrinos were lighter than ~0.6 eV, they
were still relativistic at the time of photon decoupling at

z=1090 (photon temperature 3000K=0.26eV).
® <EV> = 3. I 5(4/' I)I/3Tphoton — 0.58 eV

Neutrino masses didn’t matter if they were relativistic!
For degenerate neurinos, ) my = 3.04x0.58 = |.8 eV

® If Y m,<< |.8eV, CMB alone cannot see it "



Komatsu et al.

CMB + Ho Helps

~ | WMAP

1.5
® WMAP 5-year alone: B WMAP4BAOSN
Smv<l.3eV (95%CL) =
o WMAP+BAO+SN: =10
> m,<0.67eV (95%CL) 5

® VWhere did the improvement 0.5
comes from!? It’s the present-
day Hubble expansion rate, Ho

55 ©60 65 70 75 80
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Hq [km/s/Mpc]
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® |-to-2: baryon-to-photon; |-to-3: matter-to-radiation ratio

® Qy=2.47X | O-Sh-2 & Qr=Qy+QV= | 69Qy=4 | /x| O-Sh-2
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Neutrino Subtlety

® For > my<<I|.8eV, neutrinos were relativistic at z=1090

® But, we know that > my>0.05eV from neutrino
oscillation experiments

® This means that neutrinos are definitely non-
relativistic today!

® So, today’s value of (), is the sum of baryons, CDM, and
neutrinos: Qmh? = (Qp+Q)h? + 0.0106(3> mv/ 1 eV)
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Matter-Radiation Equality

® However, since neutrinos were relativistic before
z=1090, the matter-radiation equality is determined by:

® |+zeq= (Qp+Q)h?/ 4.17x10 (observable by CMB)
® Now, recall Qmh?= (Qp+Q)h% + 0.0106(>mv/leV)

® For a given (Qnh? constrained by BAO+SN, adding
>my makes (Qp+Q)h? smaller -> smaller zeg ->
Radiation Era lasts longer

® This effect shifts the first peak to a lower
multipole
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2 my: Shifting the Peak To Low-l
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® But, lowering Ho shifts the peak in the opposite

direction. So...



Ichikawa, Fukugita & Kawasaki (2005)

Shift of Peak Absorbed by Ho

® Here is a catch:

- | WMAP
® Shift of the first peak to 1.5 2 WMAP+BAO+SN

a lower multipole can be
canceled by lowering Ho!

>
9,
® Same thing happens to curvature of >
the universe: making the universe E]
positively curved shifts the first peak
to a lower multipole, but this effect
can be canceld by lowering Ho.

® 5o, 30% positively curved univese is
consistent with the WMAP data, IF 55 60 65 70 75 80
Ho=30km/s/Mpc Hy [km/s/Mpc]



Effective Number of
Neutrino Species, Nef

® For relativistic neutrinos, the energy density is given by
® pv — Neff (71-[2/ I 20) TV4

® where Ne=3.04 for the standard model, and
TV=(4/I I)I/3Tphoton

® Adding more relativistic neutrino species (or any
other relativistic components) delays the epoch of
the matter-radiation equality, as

® | +zrq = (Qmh2/2.47x10-5) / (1+0.227 Nesr)



3rd-peak to zeg
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® |tis zeo that is observable from CMB.

® |f we fix Nesr, we can determine (Qnh?: otherwise...



Komatsu et al.

Neff-th2 Degeneracy
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® N and Qmh? are totally degenerate!

® Adding information on (QQnh? from the distance
measurements (BAO, SN, HST) breaks the degeneracy:

® N = 4.4 * 1.5 (68%CL)



VWMAP- only Lower L|m|t
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® N and Qnh? are totally degenerate - but, look.
® WMAP-only lower limit is nhot Ne«=0
® Ne>2.3 (957%CL) [Dunkley et al.] 2



Cosmic Neutrino Background

® How do neutrinos affect the CMB?

® Neutrinos add to the radiation energy density, which delays
the epoch at which the Universe became matter-
dominated. The larger the number of neutrino species is,
the later the matter-radiation equality, Zequality, becomes.

® This effect can be mimicked by lower matter density.

® Neutrino perturbations affect metric perturbations as well
as the photon-baryon plasma, through which CMB
anisotropy is affected. 2



Dunkley et al.

CNB As Seen By WMAP
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Komatsu et al.

Cosmic/Laboratory
Consistency

® From WMAP(z=1090)+BAO+SN
® Ner=44=x |5
® From the Big Bang Nucleosynthesis (z=107)
® Neir= 2.5 1 0.4 (Gary Steigman)
® From the decay width of Z bosons measured in lab

® Nneutrino — 2.984 i 0.008 (LEP)
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VWMAP Amplitude Prior

® VWMAP measures the amplitude of curvature
perturbations at z~1090. Let’s call that Rx. The relation
to the density fluctuation is

: 2k
O-'m.,k<z) — 5H8Qm RkT(k)DU’L Z)

® Variance of Rk has been constrained as:
AMPLITUDE OF CURVATURE PERTURBATIONS, R.

MEASURED BY WMAP AT kwarap = 0.02 Mpc —1
Model 109 X A%(kwfj\,jAp)
(), =0 and w = — 2.211 =0.083
(2. #0 and w = —1 2.212 2 0.084
(2. =0 and w # —1 2.208 £ 0.087
(. =0 and w # —1 2.210 = 0.084
(). =0, w=—1 and m, > 0 2.212 £0.083
Q. =0, w# —1 and m, >0 2.218 +0.085
WMARP Normalization Prior 2.21 =0.09 27




Then Solve This Diff. Equation...

lgnoring the mass of neutrinos and modifications to
oravity, one can obtain the growth rate by solving the
following differential equation (Wang & Steinhardt 1998;
Linder & Jenkins 2003): g(z)=(1+z)D(z)

dzg 5 1 dg
0 2 (@) — Bwer (@) (a
d In a? l {2 i 2 ({2 (a) West (@){Lde (@) dln a
; i
+ |:QQA3((1) + 5(1 T Uf’eﬁ(a'))Qde(a’) g(a) — O (76)

® |[f you need a code for doing this, search for
“Cosmology Routine Library” on Google 2



Degeneracy Between
Amplltude at z=0 (Os) and w

Flat Unlverse 3 Non-flat Un|v
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Degeneracy Between
O3 and va

® Reliable and accurate
measurements of the amplitude
of fluctuations at lower redshifts
will improve upon the limit on

2 my significantly.

® |n fact, what's required is the
lower limit on Os.

® Even a modest lower limit like

08>0.7 would lead to a
significant improvement.




Summary
® WMAP 5-year’s improved definition of the 3rd peak

helped us constrain the properties of neutrinos, such as
masses and species.

® |n particular, we could place a lower bound on Ne
using the WMAP data alone - confirmation of the
existence of the Cosmic Neutrino Background

® With WMAP combined with the external distance
measurements (still excluding the external amplitude
data), we have obtained:

® >my<0.67eV (95%CL); Ner=4.4%1.5 (657%CL)

® Future direction: find a good lower bound on Og
from galaxies, clusters, lensing, Lyman-(, etc.

31



