

Fundamental Physics and Large-scale Structure II: Hobby-Eberly Telescope Dark Energy Experiment

Eiichiro Komatsu (Texas Cosmology Center, UT Austin) on behalf of HETDEX collaboration

Coming Opportunities in Physical Cosmology, January 27, 2012

NSTITUT FÜR ASTROPHYSIK Göttingen

8 5 5

Cosmology: Next Decade?

- Astro2010: Astronomy & Astrophysics Decadal Survey
 - Report from Cosmology and Fundamental Physics Panel (Panel Report, Page T-3):

TABLE I Summary of Science Frontiers Panels' Findings

Panel

Cosmology and	CFP 1	Н
Fundamental Physics	CFP 2	v

- CFP 3 What Is Dark Matter?
- CFP 4 What Are the Properties of Neutrinos?

Science Questions

- How Did the Universe Begin?
- Why Is the Universe Accelerating?

Cosmology: Next Decade?

- Astro2010:Astronomy & Astrophysics Decadal Survey
 - Report from Cosmology and Fundamental Physics Panel (Panel Report, Page T-3): Translation

TABLE I Summary of Science Frontiers Panels' Findings

Panel

Cosmology and	CFP 1	Н
Fundamental Physics	CFP 2	v

- Dark Matter What Is Dark Matter? CFP 3
- What Are the Properties of N Neutrino Mass CFP 4

Science Questions

- How Did the Universe Begin Inflation
- Why Is the Universe Acceler Dark Energy

Cosmology: Next Decade?

Large-scale structure of the universe has a potential to give us valuable information on all of these items.

Cosmology and	CFP 1	Н
Fundamental Physics	CFP 2	v

T GILLET

- CED 2 1
- CFP 3 What Is Dark Matter? Dark Matter
- CFP 4 What Are the Properties of N Neutrino Mass

How Did the Universe Begin Inflation

Selence Questions

Why Is the Universe Acceler: Dark Energy

What is HETDEX?

- Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a *quantum-leap* galaxy survey:
 - The **first** blind spectroscopic large-scale structure survey
 - We do not pre-select objects; objects are emission-line selected; huge discovery potential

5

- The **first** 10 Gpc³-class survey at high z [1.9<z<3.5]
 - The previous big surveys were all done at z<1
 - High-z surveys barely reached ~10⁻²Gpc³

Who are we?

- About ~50 people at Univ. of Texas; McDonald Texas A&M; and Oxford
 - Principal Investigator: Gary J. Hill (Univ. of Texas)
 - Project Scientist: Karl Gebhardt (Univ. of Texas)

Observatory; LMU; AIP; MPE; Penn State; Gottingen;

Glad to be in Texas

- In many ways, HETDEX is a Texas-style experiment:
 - Q. How big is a survey telescope? A. 10m
 - Q.Whose telescope is that? A. Ours
 - Q. How many spectra do you take per one exposure? A. More than 33K spectra – at once
 - Q.Are you not wasting lots of fibers? A.Yes we are, but so what? Besides, this is the only way you can find anything truly new!

7

Hobby-Eberly Telescope **Dark Energy Experiment (HETDEX)**

1st Stars about 400 million yrs.

Use 10-m HET to map the universe using 0.8M Lyman-alpha emitting galaxies in z=1.9-3.5

Dark Energy Accelerated Expansion

Galaxies, Planets, etc.

Many, MANY, spectra

- HETDEX will use the new integral field unit spectrographs called "VIRUS" (Hill et al.)
 - We will build and put 75–96 units (depending on the funding available) on a focal plane
- Each unit has two spectrographs
- Each spectrograph has 224 fibers
- Therefore, VIRUS will have 33K to 43K fibers on a single focal place (Texas size!)

HETDEX Foot-print (in RA-DEC coordinates)

<u>:</u>6

:8

DS

:3

HETDEX Foot-print (in RA-DEC coordinates)

"Fall Field" 28x5 deg² centered at (RA,DEC)=(1.5h,±0d)

Total comoving volume covered by the footprint ~ 9 Gpc³

"Spring Field" 42x7 deg² centered at (RA,DEC)=(13h,+53d)

·22

.21

What do we detect?

- $\lambda = 350 550$ nm with the resolving power of R=800 would give us:
 - ~0.8M Lyman-alpha emitting galaxies at 1.9<z<3.5
 - ~2M [OII] emitting galaxies
 - ...and lots of other stuff (like white dwarfs)

One way to impress you

- So far, about ~1000 Lyman-alpha emitting galaxies have been discovered over the last decade
 - These are interesting objects relatively low-mass, low-dust, star-forming galaxies
- We will detect that many Lyman-alpha emitting galaxies within the <u>first 2 hours</u> of the HETDEX survey

What to measure? Inflation

- Shape of the initial power spectrum $(n_s; dn_s/dlnk; etc)$
- Non-Gaussianity (3pt f_{NL}^{local}; 4pt T_{NL}^{local}; etc)

• Dark Energy

- Angular diameter distances over a wide redshift range • Hubble expansion rates over a wide redshift range
- Growth of linear density fluctuations over a wide redshift range
- Shape of the matter power spectrum (modified grav) 17

What to measure?

Neutrino Mass

• Shape of the matter power spectrum

• Dark Matter

Shape of the matter power spectrum (warm/hot DM)

18

Shape of the Power Spectrum, P(k)

Current Limit on ns

- Limit on the tilt of the power spectrum:
 - n_s=0.968±0.012 (68%CL; Komatsu et al. 2011)
 - Precision is dominated by the WMAP 7-year data
- Planck's CMB data are expected to improve the error bar by a factor of ~4.

Probing Inflation (2-point Function)

 $r = (gravitational waves)^2 / (gravitational potential)^2$

- Joint constraint on the primordial tilt, n_s, and the tensor-to-scalar ratio, r.
 - Not so different from the 5-year limit.
 - r < 0.24 (95%CL)
- Limit on the tilt of the power spectrum: n_s=0.968±0.012 (68%CL)

Role of the Large-scale Structure of the Universe

- However, CMB data can't go much beyond k=0.2 Mpc⁻¹ (**I**=3000).
 - **High-z** large-scale structure data are required to go to smaller scales.

Shape of the Power Spectrum, P(k)

Measuring a scaledependence of n_s(k) • As far as the value of n_s is concerned, CMB is probably

- enough.
- However, if we want to measure the scale-dependence of n_s , i.e., deviation of $P_{prim}(k)$ from a pure power-law, then we need the small-scale data.
 - This is where the large-scale structure data become quite powerful (Takada, Komatsu & Futamase 2006)
- Schematically:
 - $dn_s/dlnk = [n_s(CMB) n_s(LSS)]/(lnk_{CMB} lnk_{LSS})$

Probing Inflation (3-point Function)

Can We Rule Out Inflation?

- Inflation models predict that primordial fluctuations are very close to Gaussian.
 - In fact, ALL SINGLE-FIELD models predict a particular form of **3-point function** to have the amplitude of $f_{NL}^{local} = 0.02$.
 - Detection of $f_{NL} > I$ would rule out ALL single-field models!

Bispectrum

• Three-point function!

• $B_{\zeta}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)$ $= \langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle = (\text{amplitude}) \times (2\pi)^3 \delta(k_1 + k_2 + k_3) F(k_1, k_2, k_3)$

Primordial fluctuation

model-dependent function

MOST IMPORTANT

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004) Single-field Theorem (Consistency Relation)

- For **ANY** single-field models^{*}, the bispectrum in the squeezed limit is given by
 - $B_{\zeta}(\mathbf{k}_1 \sim \mathbf{k}_2 < < \mathbf{k}_3) \approx (1 n_s) \times (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times P_{\zeta}(\mathbf{k}_1) P_{\zeta}(\mathbf{k}_3)$
 - Therefore, all single-field models predict $f_{NL} \approx (5/12)(1-n_s)$.
 - With the current limit $n_s=0.968$, f_{NL} is predicted to be 0.01.

* for which the single field is solely responsible for driving inflation and generating observed fluctuations.

30

Komatsu et al. (2011) Probing Inflation (3-point Function)

- No detection of 3-point functions of primordial curvature perturbations. The 95% CL limit is:
 - $-10 < f_{NI} > 0 < 74$
- The 68% CL limit: $f_{NL}^{local} = 32 \pm 21$
 - The WMAP data are consistent with the prediction of simple single-field inflation models: $I - n_s \approx r \approx f_{NL}$
- The Planck's expected 68% CL uncertainty: $\Delta f_{NL}^{local} = 5$

Trispectrum

• $T_{\zeta}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4})=(2\pi)^{3}\delta(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}+\mathbf{k}_{4})$ { $g_{NL}[(54/25)P_{\zeta}(k_{1})P_{\zeta}(k_{2})P_{\zeta}(k_{3})+cyc.]$ + $T_{NL}[P_{\zeta}(k_{1})P_{\zeta}(k_{2})(P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{3}|)+P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{4}|))+cyc.]$ }

TNL^{local}_f_{NL}^{local} Diagram In(T_{NL}) $\tau_{\rm NL} \ge \left(\frac{6f_{\rm NL}^{\rm local}}{5}\right)^2$ 3.3×10⁴ (Smidt et al. 2010) field models. i(f_{NL}) 74

- The current limits from WMAP 7-year are consistent with single-field or multi-
- So, let's play around with the future.

No detection of anything after Planck. Single-field survived the test (for the moment: the future galaxy surveys can improve the limits by a factor of ten).

- f_{NL} is detected. Singlefield is dead.
- But, T_{NL} is also detected, in accordance with multifield models: $\tau_{\rm NL} > 0.5(6f_{\rm NL}/5)^2$ [Sugiyama, Komatsu & Futamase (2011)]

Case C: Madness

- f_{NL} is detected. Singlefield is dead.
- But, T_{NL} is **not** detected, inconsistent
 with the multi-field
 bound.
- (With the caveat that this bound may not be completely general)
 BOTH the single-field and multi-field are gone.

Beyond CMB: Large-scale Structure!

• In principle, the large-scale structure of the universe offers a lot more statistical power, because we can get 3D information. (CMB is 2D, so the number of Fourier modes is limited.)

Beyond CMB: Large-scale Structure?

- Statistics is great, but the large-scale structure is nonlinear, so perhaps it is less clean?
 - Not necessarily.

MOST IMPORTANT

Non-linear Gravity

Non-linear Galaxy Bias

- Still peaks at the equilateral or elongated forms.⁴¹

Primordial Non-Gaussianity

- - astrophysical effects.

Sefusatti & Komatsu (2007); Jeong & Komatsu (2010)

Bispectrum is powerful

- $f_{NL}^{local} \sim O(1)$ is quite possible with the bispectrum method.
- This needs to be demonstrated by the real data we will certainly do this with the HETDEX data!

BAO in Galaxy Distribution

• The acoustic oscillations should be hidden in this galaxy distribution...

Q3

2dFGRS

• The existence of a localized clustering scale in the 2-point function yields oscillations in Fourier space.

Okumura et al. (2007)

45

Not Just $D_A(z)$...

- A really nice thing about BAO at a given redshift is that it can be used to measure not only $D_A(z)$, but also the expansion rate, H(z), directly, at **that** redshift.
 - BAO perpendicular to l.o.s
 - $= D_A(z) = 153 M_{pc}/[(1+z)\theta]$
 - BAO parallel to l.o.s
 - $=> H(z) = c\Delta z / 153 Mpc$

Two-point correlation function measured from the SDSS Luminous Red Galaxies (Gaztanaga, Cabre & Hui 2008)

Beyond BAO

- BAOs capture only a fraction of the information contained in the galaxy power spectrum!
- The full usage of the 2-dimensional power spectrum leads to a substantial improvement in the precision of distance and expansion rate measurements.

BAO vs Full Modeling

- Full modeling improves upon the determinations of D_A & H by more than a factor of two.
- On the D_A-H plane, the size of the ellipse shrinks by more than a factor of four.

Shoji, Jeong & Komatsu (2008) Modeling

50

Alcock-Paczynski: The Most Important Thing For HETDEX

- Where does the improvement come from?
 - The Alcock-Paczynski test is the key. This is the most important component for the success of the HETDEX survey.

The AP Test: How That Works

• The key idea: (in the absence of the redshift-space) distortion - we will include this for the full analysis; we ignore it here for simplicity), the distribution of the power should be **isotropic** in Fourier space.

The AP Test: How That Works

• D_A : (RA, Dec) to the transverse separation, r_{perp} , to the transverse wavenumber

•
$$k_{perp} = (2\pi)/r_{perp} = (2\pi)[Ar$$

• H: redshifts to the parallel separation, r_{para}, to the parallel wavenumber

• $k_{para} = (2\pi)/r_{para} = (2\pi)H/($

If D_A and H are If D_A is wrong: If H is wrong: correct:

ngle on the sky]/DA

$$(c\Delta z)$$

The AP Test: How That Works

• D_A : (RA, Dec) to the transverse separation, r_{perp} , to the transverse wavenumber

•
$$k_{perp} = (2\pi)/r_{perp} = (2\pi)[Ar$$

• H: redshifts to the parallel separation, r_{para}, to the parallel wavenumber

• $k_{para} = (2\pi)/r_{para} = (2\pi)H/($

If D_A and H are correct:

ngle on the sky]/DA

$$(c\Delta z)$$

D_AH from the AP test

- So, the AP test can't be used to determine D_A and H separately; however, it gives a measurement of D_AH.
- Combining this with the BAO information, and marginalizing over the redshift space distortion, we get the solid contours in the figure.

Redshift Space Distortion

 Both the AP test and the redshift space distortion make the distribution of the power anisotropic. Would it spoil the utility of this method?

- Neutrinos suppress the matter power spectrum on small scales (k>0.1 h Mpc⁻¹).
- A useful number to remember:
 - For $\sum m_v = 0.1$ eV, the power spectrum at k>0.1 h Mpc⁻¹ is suppressed by ~7%.
 - We can measure this easily!

• ~6x better than WMAP 7-year+ H_0

WMAP7 only WMAP7+ H_0 (HKP) WMAP7+ H_0 (SHOES) 70 65 75 80 $H_0 [km/s/Mpc]$

Summary

- Three (out of four) questions:
 - What is the physics of inflation?
 - P(k) shape (esp, dn/dlnk) and non-Gaussianity
 - What is the nature of dark energy?
 - $D_A(z)$, H(z), growth of structure
 - What is the mass of neutrinos?
 - P(k) shape

• HETDEX is a powerful approach for addressing all of these questions