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The EFTofLSS: A well defined perturbation theory

 Non-linearities at short scale
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The Theory of the Universe

e Useful or not, this 1s the correct description of the long distance universe

e for oceans waves, we describe water as a fluid

* not as a set of molecules hitting each other
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e similarly the long distance universe is the system described by the EFTofLLSS



Normal Approach: numerics

e Just stmulate the full universe (such as water molecules to simulate ocean waves)




Why numerics are not enough

* they do not give the simple description of the system
e In principle, we can simulate the clustering of dark matter with N-body sims
* But
e simulations with dark matter are very slow
e systematic error of order 1%

A. Schneider, R. Teyssier, ... V. Springel et al. 1503

e we cannot simulate baryons: we can only model’ them

1

—As a proof, SDSS stops analyzing data at k£ ~ 0.1 hMpc™




Numerics have been great

* Do not misunderstand me:

—numerical simulations have provided some of the most

discoveries:
e dark matter 1s cold

e structures form from small to big

many due to Stmon White here!

* But I believe, after these giants, we live in hard times
—and to make further progress, high precision is required

e N-body sims do not seem, to me, the only appropriate tool.



Idea of the
Effective Field Theory



Consider a dielectric material

* Very complicated on atomic scales d.;, i
* On long distances d > d.iomic
—we can describe atoms with their gross characteristics
e polarizability dj; o ~ o Egeeric  © @Verage response to electric field
—we are led to a uniform, smooth material, with just some macroscopic properties

e we simply solve dielectric Maxwell equations, we do not solve for each atom.

 The universe looks like a dielectric

Dielectric Fluid
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Construction of the
Effective Field Theory



The Effective ~Fluid

—In history of universe Dark Matter moves about 1/knp, ~ 10 Mpc

— it is an effective fluid-like system with mean free path ~ 1/kxy, ~ 10 Mpc
— 1t interacts with gravity so matter and momentum are conserved

e Skipping subtleties, the resulting equations are equivalent to fluid-like equations

V2P, = H? % with Baumann, Nicolis and Zaldarriaga JCAP 2012
4, with Carrasco and Hertzberg JHEP 2012

; with Porto and Zaldarriaga JCAP1405
Owpr + Hpy + 0; (pv}) = 0

y |
v + Hv] + v/ 0u] = ;5{77@-]-

—short distance physics appears as a non trivial stress tensor for the long-distance fluid

2
Tig ™ 5@']’ Pshort (vshort + (I)short)



Dealing with the Effective Stress Tensor

e Take expectation value over short modes (integrate them out)

0 .
<Tij>long—ﬁxed ~ 5@3 [po + Cs 5/01 -+ O <_, @iv;, 5,0%, .. ) -+ AT]

kNL

* We obtain equations containing only long-modes

V2P, = 220
P

A1 + Hpi + 0; (pv]) =0

y |
v + Ho] + v/ 0u] = ;@Tij

"\

o0 :
(Tij)long—fixed ~ 0ij {po +cs0p + O (k—’ Y ) + AT]
NL
* How many terms to keep?
5,0[ k

—each term contributes as an extra factor of e

* we keep as many as required precision

e —> manifest expansion in L < 1
NL



A theory, and not a model

1.03 ; 1

[ )'1,‘ ' 3

LO2F -\ - i ", :
[ \

2 1O1E-™ < ?
& :.'f . .”% ! . -
¢ 1.00F / "‘ ! bt R — T e s s s s
: i , ;

= - — | ]
& 099t y ot 3 -==- linear theory ; ]
: '} ——1-loop EFT : :

0.98F - § -, oo (quad.1) | .

e AT 2-loop EFT with k* Py, + P | i )

oo7b L. . . uteo W, oo | C
0.0 0.1 0.2 0.3 04 S 0.6

k [h Mpc™1)

e The EFTofLSS 1s a theory and not a model

* N0 guess-work, no intuition

—It Taylor expands in well defined, small parameters

* Order by order improvement

* We can estimate the theory error

* We can compute the next order and the result will improve

—Several observables are connected

—all of this does not happen for a model



How do we know the EFTofL.SS 1s right?

* The EFToOfLSS 1s the theory of the long distance universe

—By using only the symmetries of the problem, the Effective Field Theory correctly
describes the LSS

—1n this sense, 1t 1s manifestly correct
—this 1s not presumption

—History of physics have thought us that this is possible

— GR 1s the EFT of a spin-2 particle
— E&M for dielectrics 1s an EFT
— The Chiral Lagrangian 1s an EFT

 All these theories have free parameters, but these parameters are guaranteed to

make the theory approach the truth order by order in a perturbative expansion



Perturbation Theory
with the EFT



Perturbation Theory within the EFT

* In the EFT we can solve iteratively ¢,,v,, &, < 1

)
V2P, — g2
p .
01 + Hpr + 0; (pv]) =0

. . . . 1
Ulz —+ HU; —+ vfajvf — —8jnj

TN

<Tij>long—ﬁxed ~ 6ij [pO + Cs 5pl +O

—need to renormalize
e as loops with short-distance mode not under control:

e crucial difference wrt former techniques
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Connecting with the Eulerian Treatment
* When we solve iteratively these equations in §,, vy, &, < 1,

—this corresponds to expanding in two parameters:

k
€tidal (k ) ~ / dBC] P (C] ) Effect of Long Overdensities

2 3 Q) Effect of Long Displacements
€long displacement (k ) ~ k / d q q2 S P

X
y

—Displacement from long modes, longer than the BAO, (x.1) gp
cancel in p(g) by GR | r

, ' &
— ——> they are important only for the BAO o

-

with Zaldarriaga JCAP1502 % (x + Ax .1+ AT)
see originally Scoccimarro and Frieman 9609047
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Perturbation Theory in our Universe

e Our universe has more than one scale: parameters scale differently.
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€long displacement is of order one
for low £ ’s, but being IR dominated,

1ts contribution can be treated
non-perturbatively

Since displacements displace

(they do not deform)
effect 1s kinematical and not dynamical

(so concelvable to resum)
with Zaldarriaga JCAP1502

e After IR-resummation, and after renormalization, each loop goes as power of (Etidal)L



Was the IR-resummation already done by Zeldovich?

You are reinventing the wheel

— assessment from a famous theorist

e Zeldovich had already “guessed’ a way to get a solution by non-expanding in

€long displacement

* But:
—Zeldovich approximation 1s an approximation in €tidal
e It is just a super-clever, awesome, humbling.... approximation
* but it does not tell us how to include the next correction in €tidal, 1t 1ignores it

e two decades of failing in making Lagrangian PT work demonstrate this

e Our IR-resummation goes beyond Zeldovich, because it allows us to go to arbitrary

order in €iidal

e this 1s what I would call to understand the problem with Zaldarriaga JCAP1502



Results for Dark Matter



EFT of Large Scale Structures

* Loop contributions from non-linear modes give non-sense results: we need to correct

for them: renormalization (make the calculation UV-insensitive)
e At 1-loop 327'7: i~ Cs k25 (k)
e At 2-loops, consider 827-2.]. ~ C1 k2[52](k) + ¢y k45(k)

Estimate size of counterterms
by requiring cutoff independent result

( P(UV— safe, A=00) (UV—safe, A=2)

+ coynterterms)/P

2 loop 2 loop
‘ T T
uv) _ (UV) _ (UV) _
TR =Cy _Cstoch_0 7777777 i

(UV) (UV) (UV)
1 C

— best—fit values forc;” "7, ¢, 7, Cyoen

k [h Mpc_l] with Foreman and Perrier 1507

. j At two-loops, with precise data, 3 counterterms are needed, and we estimate size

* The fact that this works 1s another proof that the EFTofLLSS is correct



EFT of Large Scale Structures

with Foreman and Perrier 1507

e At 2-loops, we need speed of sound & quadratic & higher-derivative counterterm:

0°1ij ~ cs K*0(k) + 1 K*[6°](k) + ¢4 K*6 ()

* How to choose for them?
e Fit them to data
* How to get sure we do not overfit?

* As data increase, the improved measurement of parameters should be

compatible with measurement with less data



EFT of Large Scale Structures at Two Loops

27,5 ~ s K20(K) + 1 K202 (k) + ca K*5(k)

* . As data increase, the
improved measurement
of parameters should be
compatible with
measurement with less
data

o It wefituntil £ ~ 0.32h Mpc™!
we are not overfitting

with Foreman and Perrier 1507
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. 01y ~cs KPO(k) + e KP[0°%](k) + 4 kPO (R)

103,

Ptheory/PNL

0.98f

0'96:

* k-reach pushed to % ~ 0.34 h Mpc™! , cosmic variance ~ 1073

EFT of Large Scale Structures at Two Loops

3 free counterterms
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 Huge gain wrt former theories

with Carrasco, Foreman and Green JCAP1407

with Zaldarriaga JCAP1502
with Foreman and Perrier 1507



EFT of Large Scale Structures at Two Loops

827_@']' ~ CS kQé(k) —|— Cl ]{2 [52] (k) _|_ C4 k45(k> with Foreman and Perrier 1507
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e Are we overfitting?
e Fitting procedure constructed in order not to overfit
* Size of counterterms compatible with expectations from UV-insensitivity
* Theory error estimated by imposing 1o compatibility of measurement of
parameters as we increase Kt e

o If we set FPo00p = 0, then fit to data is very bad



3EFT of Large Scale Structures at Two Loops
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e All former theories, RPT, LPT,.... differ from SPT just by the IR-resummation
« —> by GR, IR-modes cancel in P(k), so cannot change the UV-reach of the theory

* they just change the BAO, which are 2% oscillations in k-space

* So, 1f you see plots where RPT 1s improving the UV-reach wrt SPT, it 1s not just IR-

resummation, but something else which, to me, 1s physically not derived nor justified
e at this point, you can call RPT as you wish (fitting function? ansatz?...you choose)

e 1t does not seem to me a well defined theory.



EFT of Large Scale Structures at Two Loops
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 In former two-loop EFT calculation, the k-reach had been estimated to potentially

reach k~04—06h Mp ! with Only the Csq parameter. ——

e Using Coyote-emulator data, 2% sys. error bars Ak

ettt et et e e b .

* More precise data show that the Cs parameter 1s 30% different than from Coyote
* reduces the k-reach a bit more than expected (not by much though)

Baldauf and Zaldarriaga 1507, 1507, with Foreman and Hideki 1507
e It 1s compulsory that with more precise data (0.1%), the k-reach 1s decreased (look

linear theory failing at % ~ 0.032Mpc~'!) and more counterterms are needed:
* k-reach makes sense as concept only after specifying the precision of the data

e The story has not been changing apart for better measurement of the parameters



Precision at low k’s
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 k-reach 1s not everything. Precision at low k’s 1s also important and great
* no matter the k-reach, at low k’s very fast convergence.

e Look where linear theory fails!, £ ~ 0.03 hMpc~', and these are Euclid-like error bars!

e we can see that order by order, at low k’s, the EFT converges!

 former techniques and N-body sims do not converge to this accuracy



In the EFTofLLSS we need parameters.
Let us measure them from
small N-body Simulations!

with Carrasco and Hertzberg JHEP 2012



Measuring parameters from N-body sims.

e The EFT parameters can be measured from small N-body simulations, using UV theory
—similar to what happens in QCD: lattice sims

e We measure C; using the dark matter particles:
Running of ¢comp(A) at kex=01, a=1

2
Tig ™ Z T (Ui + ¢’L) [ e fen= 1 hMpc~! (CAMB) |
i R 14x107% —— ke = 185 Mpc™! (CAMB) -
- weses TUNNINE from Consuelo
© : A = 1/6 (h/Mpc) from Consuelo atA=1/3 (h/Mpc)
o> 12x107%
g 1.X 10_6:— A =1/3 (h/Mpc) from Consuelo
= !
Q s
. 8.x1077
0-x 10705504 06 08 10
A (/Mpc)
de, d [,
* Agreement with fitting from Power Spectrum directly AN~ dA A’k Prs(k)

with Carrasco and Hertzberg JHEP 2012



Other Observables



Other Observables

—Since this 1s a theory and not a model

—prediction for other observables from same parameters
—3point function

—very non-trivial function of three variables!

with Angulo, Foreman and Schmittful 1406 '% | .\
see also Baldauf et al. 1406 ‘

—Momentum

—They all work as they should
with Carrasco, Foreman and Green JCAP1407

—Vorticity Spectrum  with Carrasco, Foreman and Green JCAP1407

—agrees with most accurate measurements in simulations

Pueblas and Scoccimarro 0809
Hahn, Angulo, Abel 1404



Analytic Prediction of Baryon Effects

with Lewandowski and Perko JCAP1502



Baryonic etfects

* When stars explode, baryons behave differently than dark matter

-

-

* They cannot be reliably simulated due to large range of scales



Baryons

e Main idea for EFT for dark matter:
— since in history of universe Dark Matter moves about 1/kyy, ~ 10 Mpc
* —> itisan effective fluid-like system with mean free path ~1/kNt,
* Baryons heat due to star formation, but they do not move much:
— 1ndeed, from observations in clusters, we know that they move
1/kntp) ~ 1/ExL ~ 10 Mpc
e —> 1it1s an effective fluid with similar mean free path
—Universe with CDM+Baryons —> EFTofLSS with 2 species

* The effective force on baryons: expand force in long-wavelength fields:

827'1, -+ 8%, ~ Cg 8251 + Cy 8251 + ...

/

gravity-induced pressure star formation-induced pressure



Baryons
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k
— Analytic form of effect known: AB(k) ~ c; (k_NL> P/ (k)

—and 1t seems to work as expected



Halos Power and Bispectrum

Senatore (alone) 1406
with Angulo, Fasiello and Vlah 1503



Halos in the EFTofLLSS

e Similar considerations apply to biased tracers:

e Halo formation depends on fields evaluated on past history on past path
Senatore 1406

: O?p(Tq, t')
On (T, 1) =~ / dt" H(t") [cag ¢(t,t’) (t’)’2 Mirbabahi, Schmidt, Zaldarriaga 1412
it Hoogiais(t,t
+ Covi (1, ) H(t ) + Co,0,00101 (1, 1) H({)? H )

* this generalizes and completes McDonald and Roy 0902
e this correctly parametrizes assembly bias

e Since evolution is k-independent, we can formally evaluate the integrals, to obtain

only 7 parameters for

e at 1-loop power spectrum

e tree level bispectrum

e tree level trispectrum



Halos in the EFTofl.SS with Angulo, Fasiello, V1ah 1503

* We compare P}}}L_IOOP pl-loop  ptree  ptree  ptree  using 7 bias parameters
)

hm hhh s hhm hmm

)

e Fit works up to k& ~ 0.3 hMpc~! for 1-loop and &k ~ 0.15 hMpc™' at tree-level

(for low bins, with large theory uncertainties): as it should

1 P S x . L
1. \
\‘\\\
i 1. 0.100
LI
N v \
1. T 0.010
- B
24 0. .
N 0.96 0.001
0.98 0 o
0.0 0.1 0.2 0.3 0.4 0.5 10-4k ) | ‘ ‘ |
k[h/Mpc 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

e the 3pt function measures very well the bias coefficients (there 1s a lot of data)
* 4pt function 1s predicted

e Similar formulas just worked out for redshift space distortions
with Zaldarriaga 1409



The EFT of Large Scale Structures
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L
* A manifestly well-defined perturbation theory (i)

kENL

e we match until k£ ~ 0.34 hMpc™' , as where we should stop fitting
—there are ~]1()? more quasi linear modes than previously believed!
equil., orthog.

—huge 1impact on possibilities, for ex: JnL S 1, neutrinos, dark energy.

 This 1s an huge opportunity and a challenge for us.



Conclusions

* The EFTofLSS: a novel and powerful way to analytically describe Large Scale Structures

, the real universe: many application for astrophysics

—It uses novel techniques that come from particle physics

* Loops, divergencies, counterterms and renormalization, IR divergencies

* Measurements in Simulations (lattice) and lattice-running

* Many calculations and verifications to do

* Huge opportunity for complementarity with simulations

—Maybe do simulations focussed to convey the EFT parameters?!

e If success continues, revolution in our expectations for next generation experiments

—on primordial cosmology

P lheory/P NL

103

102f

LO1f- -

099L
098

1.00f %
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i —— 1-loop EFT

(quad.1l)

2—loop EFT with &*Py; + P




Extra



A subtlety: non-locality in Time



This EFT 1s non-local 1n time

 For local EFT, we need hierarchy of scales.

—In space we are ok

—In time we are not ok: all modes evolve with time-scale of order Hubble

with Carrasco, Foreman and Green 1310

Carroll, Leichenauer, Pollak 1310

e —> The EFT is local in space, non-local in time
(1ij)s, ~ | dt' K(t,t") 0°¢(zq,t')

—Technically it does not affect much because the linear propagator is local in space



A Non-Renormalization Theorem



A non-renormalization theorem

e Can the short distance non-linearities change completely the overall expansmn rate of

the universe, possibly leading to acceleration without A2

* In terms of the short distance perturbation, the effective stress tensor reads

Too ~ (mass+ kinetic energy + gravity potential energy)

~ (2 kinetic energy + gravity potential energy)

e when objects virialize, induced pressure vanish < 0s (2?}% + P 5) )Viriahzed — ()
—ultraviolet modes do not contribute (like in SUSY)

* The backreaction 1s dominated by modes at the virialization scale
H2

NL

_5 —d

2 (.2
Tl,ij ™ 0; (513' Tz,oo) ~

with Baumann, Nicolis and Zaldarriaga JCAP 2012



Perturbation theory



Perturbation Theory within the EFT

* Since equations are non-linear, we obtain convolution integrals (loops)

6™ ~ /GreenFunction x Source!™ [5(1),5(2), . ,5("’_1)]

= 0% (k) ~ / Ak 60 (k) 60k — ko), = () ~ / Pk, (502)?




Perturbation Theory within the EFT

* Regularization and renormalization of loops (no-scale universe) p,, (k) = - ! _ (kk )
NLT \ANT

—evaluate with cutoft:

A E\° . E\° k
Pl—loop == le\ (—> (—) P11 -+ C?mte <—> P11 + Subleading n —
knt, k

ENL ENL NL

— divergence (we extrapolated the equations where they were not valid anymore)



Perturbation Theory within the EFT

* Regularization and renormalization of loops (no-scale universe) p,, (k) = - ! _ (kk )
NLT \ANT

—evaluate with cutoft:

A E\° . E\° k
Pl—loop == le\ (—> (—) P11 -+ C?mte <—> P11 + Subleading n —
knt, k

ENL ENL NL

— divergence (we extrapolated the equations where they were not valid anymore)

— we need to add effect of stress tensor 7,; D ¢ 6p

2
2 /A
Pi1.c.,=cs| — | Pi1 , choose ¢s=—¢ + Cs. finite

ki,

E\ o kN’ k
j Pl—IOOp —+ Pll, cs — Cs. finite (—) P11 —+ ij{imte (—> P11 —+ Subleading n —
kNL kNL kNL

—we just re-derived renormalization

—after renormalization, result 1s finite and small



Perturbation Theory within the EFT

* Regularization and renormalization of loops (no-scale universe) p,, (k) = - ! _ (kk )
NLT \ANT

—evaluate with cutoft:

A E\° ol kY k
Pl—loop == le\ (—> (k—) P11 + Ciimte <—> P11 -+ Subleading n k—

NL NL kNL NL

/

— divergence (we extrapolated the equations where they were not valid anymore)

— we need to add effgct of stress tensor 7,; D ¢ 6p

2
2 /A

Pi1.c.,=cs| — | Pi1 , choose ¢s=—¢ + Cs. finite
ENL

ki,

E\ o kN’ k
j Pl—IOOp —+ Pll, cs — Cs. finite (—) P11 —+ Cgimte (—> P11 —+ Subleading n —
kNL kNL kNL

—we just re-derived renormalization

—after renormalization, result 1s finite and small



The EFTofLSS at high-z

with Foreman 1503
with Foreman and Perrier 1507



All redshifts
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N
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Linear 2-loop EFT
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Results 2-loop IR-resummed

e UV reach improves at high-z ¢
1.01¢
* Theory error gets smaller o
0.985

1.02;
101§
1.00
0.99F
098t

Pineory /PNL

1.02F
101E
1.00}
099}
098

k [h Mpe™']

* The gain wrt former techniques is huge

e Time dependence of Cs, C1, C4 1s measured (only 12 parameters for all z’s)
* size compatible with UV expectations

e« = we can do CMB lensing analytically up to high ell.
e and similarly galaxy lensing

e Cs detected detected with high sensitivity by upcoming CMB experiments



IR-effects



The Effect of Long-modes on Shorter ones

e In Eulerian treatment

0 Pshort wavelength

L Eulerian



The Effect of Long-modes

e Add along “trivial’ force (trivial by GR)

 This tells you that one can resum the IR modes: this is the Lagrangian treatment

VCI)long wavelenght

to
6pshort wavelength

AN AN _

T \/ \
LEulerian

time

Big “trivial’ Perturbation

5pshort wavelength

A /‘\ _
~__" \

LEulerian



Baryons



Baryons

3
VQCD = _HO 2%0 (QCCSC -+ Qbéb)

50 — —EC)@((]. + OC)UC)

L C

a

b

e The two species conserve mass, but exchange momentum (through gravity):

| 1] o | P . 1, -
0; U, + HO;v, + Eé?z-(vé@jvﬁ) + 582975 = —Eai (OTP)Z + ;()Z("/)z

. 1 o 1 o
0; 0y + HOvh + —0i (v 0j0}) + —0%¢ = —
a a

—()

(()Tp) 0

(7)e =

DNV BN
—0; (07p),, + adz'(?’)b

a

1 | 1
—V*, (7)%) =——V".
Pe Pb



Baryons

e The two species conserve mass, but exchange momentum (through gravity):

3
V2@ = _HO 2%0 (chc -+ Qbéb)

~—

Source of gravity

O = ——ai((1 + 00)0l)
a

L C

a

. ] o 1 5 1. . 1 .

0; U, + HO;v, + Eai(vgajvc) + 502@ = —Eai (()Tp)zc + 5()2("/)2
» ‘ : 1 ‘ ;| . 1 O 1 ‘ ‘ . 1 ‘ .
0@?}; -+ H()Z'”Ulz) + Edi(l,’g()jvg) -} 502@ —_— ——()z' (()TP)Z + C_IOZ (7)%)

a

b

. | . 1.
ot —() : ¥),=—V", vy =——V".
@7 = =V =



Baryons

e The two species conserve mass, but exchange momentum (through gravity):

3
VQG) = _HO 2%0 (QCCSC -+ Qbéb)

e = ——az'((l + dc)ve) 7
a
. 1 o
5b _Z()z((l -+ Ob)’l}b)
o i aody Lo ga iy, Lo Lo v 1,
0;0, + HOjv, + —0; (v} 0jv,) + —0°¢p = ——0; (07p),, + —0i(7).
a a a a

i N I PNV PRI Py Lo vi g v

00y + HOjup + g()z-(vgdjvb) + 502@ = ——0; (07p), + E()Z-(“,f)b ,

a

Each-species’ mass conservation

. | . L.
or) = i | (P)i= -V, ()= -V
Oy =0 (= V L (b=



Baryons

e The two species conserve mass, but exchange momentum (through gravity):

3 as
2, 9240~
Vi = QHO a (§2c0c + $20p) Stress tensor like term:
: 1 o two derivatives from momentum conservation
50 — —E()Z((l -+ OC)UZ) ‘
. 1 |
o0p = ——0; ((1 + dp)v;
b = ——0i((1+ 0p)vp) \

o i N P 1 o [ 1 i
0; U, + HOojv,, + g()i(vg()jvc) + g() O = _E()i (OTp)f, + E()z-(’*,f)c ,
y ‘ . 1 ‘ S 1 5 1 ‘ ‘ : 1 ‘ .
0; Uy + HO;vp + Edi(vgdﬂ%) + 502@ = _Zdi (()’Tp)z + E()z(",)z _,

. 1 g . 1 ... . |
or,). = —o;7Y . v): = —V* . v, = ——V'.
Omo)y =057 (e=—V'e  (Dh=——



Baryons

e The two species conserve mass, but exchange momentum (through gravity):
2, 3005 o o :
Ve = —H5— (2.0, + 0p) No Stress-tensor-like term:
| only one derivative term,
be = ——0i((1 + d¢)v,) it cancel in the sum (overa]l momentum cons.)

. 1 L

. ] ‘ ] 1 ‘ ] ‘ 1 ‘ / ]' ‘ ‘ 1 ‘ 1
02'“02 -+ H()ﬂ’é —+ g()z(“l”gdjl’Z) + 502@ = —a()z' (()Tp)zc + ()z(",)é :
§ .9 § ) ]‘ é ] § 7 1 é ! ]‘ é é ] 1 é
00 + Hovh + gai(z,sgoﬂfg) + 502@ = —=0; (07,); + ~0i(7)p »

a

. 1 g . 1 ... . |
or,) = —0,79 N = =V V)= -V
( P)o' Do J o ( ))C De ) ( ))b b



