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Why do theory

Because itis fun
To show off

Because we are too lazy to run simulations

Because we like to argue with fellow theorists

Because it gives useful insights (maybe)




Perturbative approaches

Perturbation theory: Eulerian (SPT), Lagrangian (LPT)
Lowest order: 1 loop SPT, Zeldovich
PT assumes 0<1 and fails at the orbit crossing: halo formation

1d example (McQuinn & White): Zeldovich exact up to orbit crossing
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LPT vs simulations: 3d

‘Standard N-boc

LPT gets LSS right, but does not form high density halos
In Zeldovich approximation particles just stream along straight line




Beyond PT: parametrize PT ignorance
take the ratio. One can write the ratio of true P(k) to 1LPT P(k) as a

function T?(k) describing the PT ignorance, which starts as k?:
effective field theory (EFT) approach
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PT challenges in 3-d

In 1-d SPT expansion is convergent: e.g. 2 loop starts as
k4P, hence smaller than 1 loop k2P, at low k

In 3-d no longer so: higher order loops all start at k2P, and
receive large contributions from small scales which are
spurious: in reality DM is trapped inside dark matter halos
(shell crossings) on small scales. PT in 3-d is harder

As a result higher loop terms can be completely wrong in

their dominant terms Viah etal 2014
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-d PT/EFT situation

One can deﬁne'?%any different PT approaches and many different ways to
parametrize the ignorance: SPT 1 loop, SPT 2 loop, 1LPT, 2LPT, 3LPT... Higher
order not obviously better. One can also define many different EFT schemes (EFT
in SPT, LPT, IR resummation...)

EFT needs to absorb a lot of PT problems: many EFT parameters, typical value of a
of order (2-3Mpc/h)?

One can quantify the success by asking whether EFT parameter in front of k2P is a

constant (but beware of numerical issues at low k)

EFT 1 loop SPT works to k=0.12h/Mpc, 2 loop to 0.2h/Mpc with 1 parameter
(Baldauf etal, Foreman etal)
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Primordial+BAO wiggles
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EFT challenges for broadband

® one parameter EFT is only an approximation, one needs to add
more free parameters at higher k

EFT has free parameters which are fit from simulations, so one
can always choose a k where the fit is perfect: danger of
overfitting (e.g Baldauf etal 2015)

For k>0.2h/Mpc stochastic terms become important, and EFT
needs additional terms

Parametrizing ignorance with a single parameter works best at
low k, but this is the regime where sampling variance errors
dominate and linear theory works well

There is a limited dynamic range where EFT with a single
parameter is applicable and relevant: 0.o5h/Mpc<k<o.2h/Mpc
(z=0)

For higher k additive 1-halo term model is more suitable




H a | O m Od e | (with I. Mohammed, Z. Vlah)

Approach 2: use PT (e.qg.
Zeldovich) approximation to
describe large scales

Use halo model to describe small
scales and add

Halo description: mass, profile:
take moments

Halo mass function dn/
dInM=f(v)dv

P

=AKO+A K +A KA+
Halo model not accurate
enough, use simulations to

determine A, A,, etc

1halo

2 HZPT
At low k we need to impose mass EF7 2Toop
and momentum conservation,
forcing 1 halo term to vanish
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Total power spectrum
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PT model for galaxies

Need to develop nonlinear models that are sufficiently general to
allow for any reasonable nonlinear effects present in the data,
while preserving as much of cosmological information as possible

Some can be modeled by perturbation theory (PT)+biasing

There is always more information on small scales, but most of it is

hopelessly corrupted by nonlinear effects that cannot be modeled
inPT

One needs to model ourignorance obeys all symmetries (e.qg.
k2P, (k) at low k) and all physics (the biasing parameters are
physical, e.g. FoG is determined by halo mass...)

In recent years a workhorse has been the halo model+biasing+PT
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PT+halo model for halos

® Use PT to model . ;
halos, account for RSD i1s never linear for k>0.1h/Mpc

all bias terms
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Beyond PT: effect of satellites in

real space

Satellite-central pairs and satellite-
satellite pairs inside halos create
additional 1 halo term

Leading term at low k: additional
Poisson shot noise amplitude
>2=V/N_ given by number of central-

1-h only

satellite pairs | L2 ()

Leading correction due to radial
distribution Z2(2-k2R2 . ), same also for
2-halo term

\Vils

. . ; k[h Mpc™]
Must vanish at high k to give o or 1/n i

+2-h (halo)
+2-h (full)

k [h Mpc™

Okumura et al 2015




Beyond PT: redshift space
distortions

Supplemented by satellite
velocities inside the halos (Fingers
of God), inducing 2 halo term and 21
halo term

FoG term is large: virial theorem
O,;.°= 50R,,. 2, must use resummed

vir 1

version, e.g. exp(-k?u2c; ?)

=
0
o
N —
o
=
=
h.
e
1]
o
2

Leading term: 2 halo correlation L 00—
. 0,=5.9Mpc/h —— ~
between central galaxies and 2[ "-05Mpch ——-

satellites in different halos

FoG also applies to 1 halo term




Example: modeling of CMASS in

SImU|at|OnS Okumura etal 2015

Linear Kaiser never a good model I e :

With SPT, 1 shot noise term and 1
FoG term one can go to k=0.2h/Mpc
(current state of the art: e.g. Beutler
et al, based on models by Saito,
Taruya, Scoccimarro)
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To go beyond one needs more PT
biasing parameters. New NL model

achieves 1% to k=0.4h/Mpc by
introducing many physical

S,model
g9

parameters in the PT model: central
and satellite galaxies, each with a
bias and FoG, 1-halo contribution
from central-satellite pairs, halo
exclusion...
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Covariance matrix

simulations have a hard time converging on covariance matrix, its
inverse is “hard”: e.g. 12,000 simulations in Blot et al. 2014

Disconnected part: "gaussian” is easy: we should compute it
analytically using window functions (note: this is not done currently)

Connected part: smooth response to long wavelength modes

42
KAk

Cov(P(k:), P(k;)) = P(k:)P(k;)V "’ (

dij + 5]?40)




PT approach to Covariance

® Modes from outside the survey (do not average to zero):
tree level effects from survey window function very
important (supersample variance), easy to calculate,
depend on whether the mean density is computed from
within the survey or not (Li, Takada, Hu 2014)

21 3dlnk 21 3 dlnk

47 1dlnP 68 1dIn(k°P)
—— =7~ | %

® Use 26/21 instead of 68/21 for local mean density

® Modes inside the survey (average to zero): use PT
trispectrum




PT trispectrum

® Tree-level calculation (Scoccimarro etal 1999)

Cy = (P(k)P(ky) — (BE))P(K)) =V [%&jmki,km
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® 1-loop terms: sample variance of low k modes (Mohammed & US)
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PT vs simulations
k" =0.10
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Lessons: connected part of covariance 1s very correlated
For k>0.2h/Mpc all the modes are strongly correlated
Correlations generated by long wavelength modes:
beware of jackknife/bootstrap methods




Covariance matrix as an external

parameter

® Most of the connected covariance comes from a small
scale response to long wavelength modes

® The connected part can be written as a single eigenmode

CijzAdidjl where i represents k. amplitude and d. is a
response at that k,
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Covariance as a fit for additional
external nuisance parameter

Treat d. as an external nuisance parameter:

P(k.)=P¢4(k))+ad,

Marginalize over a, possibly with a theoretical prior
Non-gaussian covariance matrix reduced by a factor of 100 (k>0.1)

Degeneracy with amplitude at low k (prior useful), lifted at higher k
(prior not needed)

Preliminary: same concept also works on galaxies




Conclusions

PT is alive and well: it may be able to describe clustering up to orbit
crossing (2 halo term formation), but not beyond: in 3-d PT fails even
before shell crossing

PT alone cannot give accurate results, needs to be supplemented by
non-PT modeling of halos: EFT, halo model...

PT+EFT useful at low k (k<o.2h/Mpc), halo model also at higher k

Galaxy biasing: all terms that can exist by symmetry exist, and at the
halo level may be predictable (i.e. function of halo mass)

1-halo terms and RSD FoG terms non-perturbative and needed
PT+halo model successful in RSD models up to k=0.4h/Mpc

PT 1 loop SPT successful for modeling DM covariance matrix, and
suggests covariance can be modeled as external nuisance parameter

Full theory (beyond PT) still not available (except simulations)




