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Motivation 
• To make known to Bayesians  some key concepts  
of nonlinear data analysis (NLDA)  

• To start another attempt to bring together the best from ‚the  
two worlds‘ 

‚The two worlds‘: 

NLDA: 
„The model is the data.“  
(C. Grebogy) 

Bayes: 
"You always put prejudice in it. 
That's called the Bayesian 
method.“ 
(Dick Bond to George Efstathiou,  
 Paris, Planck Meeting, 27.9.12) 



I.  Tools: 
Some Higher Order 

Statistics 



Minkowski Functionals 
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two-dimensional image data/CMB data  => three Minkowski functionals (MF):  

M2= χ =  
   # connected regions -   
   # holes in the regions. 

Area : 

Circumference: 

Euler characteristic: 

of an excursion set R(ν)  
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Information (of the sum) of all n-point correlation function is contained in the MF  

Mecke et al., A & A, 1994 
Schmalzing & Gorski, MNRAS, 1998  



Scaling indices for spherical data 

Idea: Assessing local scaling properties: 

3D representation 
of WMAP data 

x-z-projection for  
all points with |y|<0.1 
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Consider a point distribution P:  

Local cumulative weighted density:  

Scaling Indices:  

See e.g. for a review:  
G. Rossmanith et al., Adv. in Astron., 2011 



Non-linear prediction error (NLPE) 
Predicted vs. true flow in artificial phase space constructed with 
delay coordinates: 
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See e.g.: G. Sugihara and R. M. May, Nat., 344, 734(1990) 



Phase Maps 
Consider the Fourier Transform  FT(I(x)) =  A(k)eiφ(k)  of a time series I(x):  

A phase map is a two-dimensional set of points G = {φ(k),φ(k+∆)} where φ(k) is 
the phase of the kth mode of the Fourier transform and ∆ a mode delay. 

See e.g.: L.-Y. Chiang, et al., MNRAS 337, 488 (2002) 

Note: If the phases are uniformly distributed and independent 
from each other, the phase maps are a random 2d distribution 
of points.  

Examples: 



II. Surrogates 



Surrogates 

Definition: 
‚Surrogates are data sets which have some properties with a 
given data set in common while all other properties are 
subject to randomisation‘  

Most common surrogates:  
Preserving linear properties, i.e. power spectrum,  
randomising all Higher Order Correlations <=> 
Fourier phases are random and correlation-free 

Background:  
Resampling techniques: Jackknife, Bootstrapping, etc. 

One of the key concepts of nonlinear data analysis 



Volker Dose‘s Talk: 



Surrogates 

Some History: 

Scheme: 

•  A priori definition of a null hypothesis 

•  Generation of surrogates consistent with null hypothesis 

•  Computation of discrimination statistics being sensitive to the complement  
of the null hypothesis 

•  Comparison of the outcome of the discrimination statistics for original data 
and surrogates 

• Accepting or rejecting null hypothesis   
Note:  
# citations: 1630 (June 2012) 
# citations: 1740 (December 2012) 
There‘s more than Bayes method...  



Probing  Linearity / Gaussianity 
Data Set Calculation of 

statistical measures 
M sensitiv to higher  
order correlations 

Surrogate data 
with the same 
power spectrum 

Statistical 
comparison in 
terms of e.g. 
significances, 
Confidence 
levels, etc. 

Constrained 
Randomisation  

M derived from e.g.: 
• Phase maps 
• NLPE  
• Bispectrum 
• Minkowski-functionals 
• Wavelets 
• Scaling indices 
• Etc...... 



III. Some Algorithms for 
Generating Surrogates 



FT-algorithm 

€ 

I0 x,y( )

€ 

φ (kx,ky )

Original data: 

Random  
phases: 

FT 

€ 

A1(kx,ky )e
iφ1 (kx ,ky )

FT-1 

Rank ordered 
remapping onto 
Gaussian distribution 

€ 

I1 x,y( )

Note: Phases are – by construction – random 
€ 

A1(kx,ky )e
iφ (kx ,ky )

€ 

Isurro x,y( )

Theiler et al., Physica D, 58, 77 (1992)  



AAFT-algorithm 

€ 

I0 x,y( )

€ 

φ (kx,ky )

Original data: 

Random  
phases: 

FT 

€ 

A1(kx,ky )e
iφ1 (kx ,ky )

FT-1 

Rank ordered 
Remapping on to 
Gaussian 

€ 

I1 x,y( )

Note: Power spectrum is whitened by the remapping step. 
          Effect of remapping on the phases is not considered. € 

A1(kx,ky )e
iφ (kx ,ky )

€ 

˜ I surro x, y( )

Rank ordered 
Remapping on to 
Original data 

€ 

Isurro x,y( )

Theiler et al., Physica D, 58, 77 (1992)  



IAAFT-algorithm 

€ 

I0 x,y( )

€ 

φrandom (kx,ky )

Original data: 

Replace φ0 by a set of 
random phases φrandom: 

FT 

€ 

A0(kx,ky )e
iφ 0 (kx ,ky ) FT-1 

€ 

J x,y( )
Rank ordered 
remapping 

€ 

In x,y( )

FT 

€ 

An (kx,ky )e
iφn (kx ,ky )

Replacement of  
Fourier amplitudes 

€ 

A0(kx,ky )e
iφn (kx ,ky )

FT-1 

Note: Randomness of the phases is not controlled during iteration. 

Schreiber & Schmitz, PRL, 77, 635 (1996) 



IV. Assessing FT, AAFT and 
IAAFT 



Assessing FT, AAFT and IAAFT 
Consider the following scalar time series from two – quite distinct - complex system, 
namely the X-ray observation of an AGN and a stock market index:  



Assessing FT, AAFT and IAAFT 
Phase maps for one  realization of AAFT and IAAFT surrogates for Mrk and DJ: 

Phase maps show 
‚features‘ !!! 



Assessing FT, AAFT and IAAFT 
(Linear) Cross-correlations of phases  
for AAFT, FT and IAAFT surrogates for Mrk and DJ: 

Systematic broadening for AAFT and IAAFT !!! 

Mrk 766 Dow Jones 

Räth et al., PRL, 2012   



Assessing FT, AAFT and IAAFT 
Significances based on the NLPE as derived from AAFT, FT and IAAFT surrogates: 

Correlations in the phases propagate into the calculation of NLPE => 
non-detection of nonlinearities with AAFT and IAAFT ! 

Räth et al., PRL, 2012  

€ 

S(ψ)=
ψoriginal − ψ surro

σψ surro



Some  more  
AGN  
time series: 

Significant differences for the 
outcome of surrogate tests 
depending on the class of 
surrogates being used.  

Less significant results for AAFT 
and IAAFT is a rule. 



Phase information vs. HOS 
Mrk 766 Dow Jones 

No correlations found for the DJ, 
High correlations detected for Mrk 766 (only) for Δ=1. 



Phase information vs. HOS 

(Surrogate) time series can be  
constructed such that:  

€ 

ψ(τ)∝ c(Δ)

•  Wiener-Chintschin-like relation between HOS and phases 
information detected 
•  Possibility, to ultimately get more insight into the meaning of 
Fourier phases for nonlinear data sets. 



V. Assessing higher order 
statistics with 
Surrogates 



Why SIM and MF ? 

Highly significant detection of HOCs in the original image with SIM and MF. 

Minkowski Functionals 
(best) SMHW-measures 
(best) SIM-measures 

Simulated G and NG flat field, α3=0.0, α3=0.3 

(Rocha et al., MNRAS, 2005) 

=> Assessing the performance of higher order statistics using surrogates. 



Why SIM and MF (2nd example) ? 

Highly significant detection of HOCs in the original image  

with MF and SIM.  

Only poor performance of wavelets.  

Minkowski Functionals 
(best) SMHW-measures 
(best) SIM-measures 

Minkowski Functionals 
(best) SMHW-measures 
(best) SIM-measures 

HRMRI images of a healthy (left) and osteoporotic (right) bone  

(Müller et al., Osteop. Int., 2006, Räth et al., Proc SPIE, 2009) 



VI. Surrogates  
and  

the CMB 



Why (scale-dependent)  
non-Gaussianity? 

•  Non-Gaussianity for Inflation is like.....  
   ...detection of the Higgs-particle for understanding mass 
   ...direct detection of dark matter 

•  Single-field inflation: density fluctuations are Gaussian   

•  Some non-standard inflationary models predict  
    scale-dependent non-Gaussianities.  

•  Once one has found a signature using a model-independent test, one wants 
to explain its origin.  

=> Testing whether existing  models can account for the detected anomalies 





Generating Surrogates 
Fourier Transform of the temperature map:  
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T(n) = almYlm (n)
m=− l

l

∑
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∞
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alm = T(n)Ylm
* dΩn∫
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How to test for possible phase correlations?  
Destroy (only) them (by scale-dependent 

shuffling) and look what happens... 

Non-Gaussian Field :  
Fourier Phases are correlated and/or  not uniformly 

distributed  



Generating Surrogates 
Introducing a two-step shuffling/replacement scheme allows to test for 

scale-dependent non-Gaussianities: 
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φlm

€ 

φlm

€ 

φlm

€ 

φlm

€ 

φlm

€ 

φlm€ 

φlm

€ 

φlm

l 

m 

All |alm|‘s are preserved. 

First order Surrogate: Shuffle outside (lmin, lmax) 

lmin lmax 

Second order Surrogates: Shuffle inside (lmin, lmax) 
C. Räth et al., PRL, 2009  



Generating Surrogates: Δl-intervals  

€ 

Δl = 2,20[ ]

€ 

Δl = 20,60[ ]

€ 

Δl = 60,120[ ]

€ 

Δl = 120,300[ ]



Deviation in rotated hemispheres 

€ 

S(ϑ,φ)= X − X
σX

,

X =< α(r) >,σα(r ),

χ2(< α(r) >,σα(r)),

χ2(Mi),i = 0,1,2

σ-normalised deviation S: 

compare with 

Simulations / 1st or 2nd order Surrogates 

WMAP  data / 1st order surrogate 



Results for SIM   
S(X) in rotated hemispheres for varying Δl and r: 

€ 

Δl = 2,1024[ ]

€ 

Δl = 2,20[ ]

€ 

Δl = 20,60[ ]

€ 

Δl = 60,120[ ]

€ 

Δl = 120,300[ ]

ILC 7yr map, X = <αr2>, <αr6>, <αr10> (from top to bottom)  

• Most significant deviations for Δl = [2,20] and Δl = [120,300] 
• Signal in Δl = [2,1024] to be interpreted as superposition of  the signals  
 in Δl = [2,20] and Δl = [120,300] 

C. Räth et al., MNRAS, 2011  



Results: 

Checks on systematics (Δl=[2,20]): 

Uncorrected 
ILC map 

Difference 
ILC map 
(year 7 – year6) 

Asymmetric 
Beam map 

Simulated  
Coadded  
VW-band map 

Simulated  
ILC-like  
map 

=> No test can so far explain the low-l anomalies! 

C. Räth et al., MNRAS, 2011  



Results: 
Checks on systematics (Δl=[120,300]): 

Uncorrected 
ILC map 

Difference 
ILC map 
(year 7 – year6) 

Asymmetric 
Beam map 

Simulated  
Coadded  
VW-band map 

Simulated  
ILC-like  
map 

=> A number of ‚residuals‘ found for the high-l case 



Results for MFs and SIM 

H. Modest et al., MNRAS, 2012 



Results for MFs and SIM 

H. Modest et al., MNRAS, almost submitted 



Results for MFs and SIM 

H. Modest et al., MNRAS, 2012 

⇒ Highly significant detection 
of NGs on large scales and of  
signatures anisotropies. 

The signal is independent  
from: 
- The input map 
-The chosen higher  
  order statistics 

Thus, what about:  
Single field slow roll inflation? 
Copernican Principle?     



Results: Linear and nonlinear 
asymmetries 

H. Modest et al., MNRAS, 2012 

Hemispherical asymmetries of the 
Power spectrum 
(e.g. Hansen et al., MNRAS, 2004 
        Hansen et al., ApJ, 2009) 

Directionality of the  
linear and nonlinear  
hemispherical asymmetries 
is not so different. 



Surrogates for an incomplete sky 

  

€ 

f (x) = amYm,m∑   

€ 

f (x) = am
cutYm

cut
,m∑

Here: Cut is ± 20°, lmax = 40 

Possible foreground residuals in the galactic plane 
⇒  Masking of the galactic plane 
⇒  Basis functions Ylm no longer orthogonal 



Creating an orthonormal basis 
on an incomplete sky 

€ 

C = AA∗

€ 

C = Y (s)Y ∗(s)
S cut∫ dΩ

€ 

Y cut = A−1Y

acut = AT a

  

€ 

am
cut , Ym

cutHow to obtain             : 

Construct the  
Coupling Matrix 
by integrating 
over the cut sky 

Decompose the 
Coupling Matrix 
with e.g. 
Cholesky 
Decomposition 

Calculate the cut 
sky harmonics and 
its coefficients 
with the matrix A 

See: Gorski et al. ApJ,1994a,b , "
         Mortlock et al., MNRAS, 2002 

Sounds straightforward, the implemention is, however, somewhat tedious.... 



Results for cut sky analysis 

no Cut 

±20° 

±10° 

Rossmanith et al., PRD, 2012"

X = σ(α) 
Excluding the galactic plane doesn‘t change the results significantly. 



NGs of the local type 

  

€ 

ψ(  x ) =ψG (
 x ) + fNL (ψG (

 x )− <ψG (
 x ) >)2

Perturbation of the curvature (NGs of the local type): 

Tests involving surrogates and fNLrealisations  (Elsner & Wandelt, ApJ, 2010) 

    10 fNLrealisations, 5 fNL values each  (-1000, -100, 0, 100, 1000) + wmap data 

    1 1st order surro, 500 2nd order surros  

⇒  50 +1 * 501 maps = 25.551 maps  

WMAP7 constraints on fNL:  fNL = 32 ± 21 (68% CL)  
(Komatsu et al., ApJS, 2011)  



NGs of the local type 

Simulation 

Simulation + WMAP-like beam and noise properties 



On the origin of low-l phase correlations  
Statistics of S- maps based on scaling indices  

Nearly no variations with 
varying fnl 

Neither extreme values 
nor first two moments 
can be reproduced by fnl 
maps    



On the origin of low-l phase correlations  
Statistics of S- maps based on Minkowski functionals  

Only a few realisations 
show  varaiations for very 
high abs(fnl)-values 

For lower abs(fnl)-values  
the S-maps statistics of 
the CMB cannot be 
reproduced by the 
simulations  



On the origin of low-l phase correlations 

Another candidate: Bianchi-like template (see Jaffe et al., ApJ, 2006):  

We consider the following two cases: 
WMAP  
WMAP -  BIANCHI-Template 



On the origin of low-l phase correlations 
WMAP NILC7 WMAP NILC7 – BIANCHI-Template 

€ 

X =< α(r10) >

€ 

X = χeuler
2



On the origin of low-l phase correlations 

WMAP NILC7 – BIANCHI-Template 

WMAP NILC7 

=>Interestingly enough, the anisotropic Bianchi template seems to be a viable model  
to (also) account for the low-l phase correlations 

(H. Modest et al, in preparation)  



A closer look at the low-l phase correlations 
What makes the SIM-/MF-Signal appear/disappear ?  

Low l-case (l<20)=> Number of basis functions Ylm , and thus of phases φlm, is limited:   

Only the variations in these modes make the difference. 
Thus, the origin of the anomalies is considerably narrowed down. 
More detailed parameter studies, more sophisticated surrogates 

=> Relation between features of HOC in real space and phase information ?! 

-π π -π π 

0 π 



VI. Conclusions 
-  Surrogates are a versatile tool for (model-

independent) data analysis, e.g. for detecting weak 
non-linearities in time series, non-Gaussianities in 
images etc. 

-  Not all surrogate generating algorithms are as good 
as they seemed to be. => Nonlinearities may remain 
undetected 

However: 

-  Surrogates can help to shed (more) light on the 
meaning of Fourier phases and their relation to HOS 

-  Deeper understanding of the information coded in 
the phases may help in the development of  
nonlinear models   



Thank you for your attention! 


