Probabilistic Numerics
 Uncertainty in Computation

Philipp Hennig
Stuttgart
24 September 2018

EBERHARD KARLS
UNIVERSITAT TUBINGEN

Mar Panax. hastatier
Intelligent Systems

Pr. some of the presented work is supported by the European Research Council.

integration	MCMC, VMP, EP, ...		probabilistic inference
optimization			
differential eqs.	like	SGD, Adam, RMSprop, ...	
linear algebra	Runge-Kutta, Multi-Step, \ldots	for	(stochastic) fitting
forecasting \& control			
Cholesky, CG, spectral, \ldots	all of the above		

generic methods save design time, but do not address special needs

+ overly generic algorithms are inefficient
+ Big Data-specific challenges not addressed by "classical" methods
Data Science / AI / ML needs to build its own numerical methods.
As it turns out, we already have the right concepts!

Computation is Inference

Numerical methods estimate latent quantities given the result of computations.

integration	estimate	$\int_{a}^{b} f(x) d x$	given $\left\{f\left(x_{i}\right)\right\}$
linear algebra	estimate	x s.t. $A x=b$	given $\{A s=y\}$
optimization	estimate	x s.t. $\nabla f(x)=0$	given $\left\{\nabla f\left(x_{i}\right)\right\}$
simulation	estimate	$x(t)$ s.t. $x^{\prime}=f(x, t)$	given $\left\{f\left(x_{i}, t_{i}\right)\right\}$

It is thus possible to build
probabilistic numerical methods
that use probability measures as in- and outputs and assign uncertainty to computation.

$$
f(x)=\exp \left(-\sin (3 x)^{2}-x^{2}\right) \quad F=\int_{-3}^{3} f(x) d x=?
$$

A Wiener process prior $p(f, F)$...

$$
\begin{aligned}
p(f) & =\mathcal{G} \mathcal{P}(f ; 0, k) \quad k\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right)+c \\
\Rightarrow p\left(\int_{a}^{b} f(x) d x\right) & =\mathcal{N}\left[\int_{a}^{b} f(x) d x ; \int_{a}^{b} m(x) d x, \iint_{a}^{b} k\left(x, x^{\prime}\right) d x d x^{\prime}\right] \\
& =\mathcal{N}\left(F ; 0,-1 / 6\left(b^{3}-a^{3}\right)+1 / 2\left[b^{3}-2 a^{2} b+a^{3}\right]-(b-a)^{2} c\right)
\end{aligned}
$$

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F \mid x_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

$$
x_{t}=\arg \min \left[\operatorname{var}_{p\left(F| |_{1}, \ldots, x_{t-1}\right)}(F)\right]
$$

+ maximal reduction of variance yields regular grid

. . . yields the trapezoid rule!

$$
\mathrm{E}_{\mathrm{y}}[F]=\int \mathrm{E}_{\mid \mathrm{y}}[f(x)] d x=\sum_{i=1}^{N-1}\left(x_{i+1}-x_{i}\right) \frac{1}{2}\left(f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)
$$

+ Trapezoid rule is MAP estimate under Wiener process prior on f
+ regular grid is optimal expected information choice
+ error estimate is under-confident

Estimate z from computations c, under model m.

$$
\underset{\substack{\text { posterior } \\ p(z \mid c, m)}}{\substack{\text { prior }}} \frac{p(z \mid m) p(c \mid z, m)}{\text { likelihood }} \underset{\substack{\text { evidence }}}{m p(z \mid z) p(c \mid z, m) d z}
$$

Classic methods as basic probabilistic inference

Quadrature
[Ajne \& Dalenius 1960; Kimeldorf \& Wahba
Gaussian Quadrature \rightarrow GP Regression1975; Diaconis 1988; O'Hagan 1985/1991]
Linear Algebra[Hennig 2014]Conjugate Gradients \longleftrightarrow Gaussian Regression
Nonlinear Optimization[Hennig \& Kiefel 2013]
BFGS / Quasi-Newton \rightarrow Autoregressive Filtering[Schober, Duvenaud \& Hennig 2014; Kerst-
Differential Equationsing \& Hennig 2016; Schober \& Hennig 2016]
Runge-Kutta; Nordsieck Methods \rightarrow Gauss-Markov Filters
Probabilistic numerical methods can be as fast and reliable as classic ones.

$$
x^{\prime}(t)=f(x(t), t), \quad x\left(t_{0}\right)=x_{0}
$$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$

$$
x^{\prime}(t)=f(x(t), t), \quad x\left(t_{0}\right)=x_{0}
$$

There is a class of solvers for initial value problems that

+ has the same complexity as multi-step methods
+ has high local approximation order q (like classic solvers)
+ has calibrated posterior uncertainty (order $q+1 / 2$)
+ can use uncertain initial value $p\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; m_{0}, P_{0}\right)$
+ Computation is an instance of inference.
+ many classic numerical methods can be interpreted as probabilistic inference, arising from specific generative models (prior \& likelihood)
+ Meaningful (calibrated) uncertainty can be constructed at minimal computational overhead (dominated by cost of point estimate)
+ Designing a numerical method is a modelling task!

The probabilistic viewpoint allows new functionality for contemporary challenges.

An integration prior for probability measures

a prior specifically for integration of probability measures
$+f>0$ (f is probability measure)
$+f \propto \exp \left(-x^{2}\right)$ (f is product of prior and likelihood terms)
$+f \in \mathcal{C}^{\infty}$ (f is smooth)
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.
[cf. information-based complexity. E.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2]

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

An integration prior for probability measures

+ adaptive node placement
+ scales to, in principle, arbitrary dimensions
+ faster (in wall-clock time) than MCMC
Explicit prior knowledge yields reduces complexity.

Estimate z from computations c, under model m.

The usual assumption:

$$
p(c \mid z, m)=\delta\left(c-A_{m} z\right)
$$

In Big Data setting, iid. batching introduces Gaussian noise

$$
\begin{aligned}
& \mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \theta\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \theta\right)=: \hat{\mathcal{L}}(\theta) \quad M \ll N \\
& p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}} ; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{N M}\right)\right)
\end{aligned}
$$

In Big Data setting, iid. batching introduces Gaussian noise

$$
\begin{aligned}
\mathcal{L}(\theta) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \theta\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \theta\right)=: \hat{\mathcal{L}}(\theta) \\
p(\hat{\mathcal{L}} \mid \mathcal{L}) & \approx \mathcal{N}\left(\hat{\mathcal{L}} ; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{N M}\right)\right)
\end{aligned}
$$

Contemporary machine learning requires tedious parameter fitting.

$$
\boldsymbol{\theta}_{t+1}=\theta_{t}-\alpha_{t} \nabla \hat{\mathcal{L}}\left(\theta_{t}\right)
$$

+ step size / learning rate α_{t}
+ batch size M
+ number of steps to termination

http://xkcd.com/1838
+ search directions

Uncertainty Can Induce Free Parameters

$$
\mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \theta\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \theta\right)=: \hat{\mathcal{L}}(\theta) \quad M \ll N \quad p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}} ; \mathcal{L}, \mathcal{O}\left(\frac{1}{M}\right)\right)
$$

$$
\operatorname{var} \hat{\mathcal{L}}(\boldsymbol{\theta}) \approx \frac{1}{M-1}\left(\frac{1}{M} \sum_{j=1}^{M} \ell^{2}\left(y_{j} ; \boldsymbol{\theta}\right)-\hat{L}^{2}(\theta)\right) \quad p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}(\hat{\mathcal{L}} ; \mathcal{L}, \operatorname{var} \hat{\mathcal{L}})
$$

Capturing the likelihood requires a new observable! It's computation is not free, but cheap! But without it, a key algorithmic parameter is unidentified!

$+f^{\prime}\left(t_{\text {cand }}\right)>0$? bisect : extend

+ until Wolfe conditions are fulfilled:

$$
f(t)<f(0)+c_{1} f^{\prime}(0) \quad \text { AND } \quad\left|f^{\prime}(t)\right|<c_{2}\left|f^{\prime}(0)\right|
$$

Probabilistic Line Searches

No more Learning Rates!

https://github.com/ProbabilisticNumerics/probabilistic_line_search

Choosing Batch Sizes

$$
\mathcal{L}(\theta)=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i} ; \theta\right) \approx \frac{1}{M} \sum_{j=1}^{M} \ell\left(y_{j} ; \theta\right)=: \hat{\mathcal{L}}(\theta) \quad M \ll N
$$

+ trade-off: $\operatorname{std}[\nabla \hat{\mathcal{L}}]=\mathcal{O}(1 / \sqrt{M})$, but cost is $\mathcal{O}(M)$
+ for SGD: lower bound on improvement: Assume $\nabla \mathcal{L}$ Lipschitz

$$
\mathcal{L}\left(\theta_{t}\right)-\mathcal{L}\left(\theta_{t+1}\right) \geq G:=\alpha \nabla \mathcal{L}\left(\theta_{t}\right)^{\top} \nabla \hat{\mathcal{L}}\left(\theta_{t}\right)-\frac{L \alpha^{2}}{2}\left\|\nabla \hat{\mathcal{L}}\left(\theta_{t}\right)\right\|^{2}
$$

expected improvement: under $p(\hat{\mathcal{L}} \mid \mathcal{L}) \quad \mathbb{E}(G)=\left(\alpha-\frac{L \alpha^{2}}{2}\right)\left\|\nabla \mathcal{L}\left(\theta_{\mathbf{t}}\right)\right\|^{2}-\frac{L \alpha^{2}}{2 M} \sum_{\ell} \operatorname{var}\left[\nabla_{\ell} \hat{\mathcal{L}}\left(\theta_{t}\right)\right]$

+ maximize expected improvement per cost, let line-search find $\alpha=1 / L$, some further simplifications (local 2nd order approximation, assert $\min \mathcal{L} \gtrsim 0$),

$$
M_{*}=\arg \max _{M} \frac{\mathbb{E}[G]}{M} \approx \alpha_{t} \frac{\sum_{\ell} \operatorname{var}\left[\nabla_{\ell} \hat{\mathcal{L}}\left(\theta_{\mathrm{t}}\right)\right]}{\hat{\mathcal{L}}\left(\theta_{\mathrm{t}}\right)}
$$

Choosing Batch-Sizes

SVHN

CIFAR-10

CIFAR-100

https://github.com/ProbabilisticNumerics/CABS

+ in empirical risk minimization, just figuring out when to stop the optimizer is a non-trivial problem
+ even the full data set is a sample relative to the population
+ overfitting becomes a problem when gradients (with their estimatable variance) are statistically indistinguishable to white noise around zero

$$
\begin{aligned}
& \log p(\nabla \hat{\mathcal{L}} \mid \nabla \mathcal{L}=0)>\mathrm{E}_{p(\nabla \hat{\mathcal{L}} \mid \nabla \mathcal{L}=0)}[\log p(\nabla \hat{\mathcal{L}} \mid \nabla \mathcal{L}=0)] \\
& 1-\frac{M}{D} \sum_{\ell=1}^{D} \frac{\left(\nabla_{\ell} \mathcal{L}\left(\theta_{t}\right)\right)^{2}}{\operatorname{var} \nabla_{\ell} \hat{\mathcal{L}}\left(\theta_{t}\right)}>0 \Rightarrow \text { STOP! }
\end{aligned}
$$

Towards Black Box Deep Learning

+ step sizes
Probabilistic Line Searches for Stochastic Optimization

Mahsereci \& Hennig
NIPS 2015
https://github.com/ProbabilisticNumerics/probabilistic_line_search

+ batch sizes
Coupling Adaptive Batch Sizes with Learning Rates Balles, Romero, Hennig UAI 2017
https://github.com/ProbabilisticNumerics/cabs
+ termination criteria
Early Stopping without a Validation Set
+ data sub-sampling gives rise to imprecise computations / non-Dirac observations likelihoods
+ free algorithmic parameters may then become un-identified
+ likelihood shape can be identified with minor computational overhead
+ classic methods provide a blue-print
+ re-phrasing them probabilistically allow inference on free parameters

Estimate z from computations c, under model m.

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Computational Pipelines

for some recent theory, see Thm. 5.9 in Cockayne, Oates, Sullivan, Girolami. arXiv 1702.03673

Probabilistic Treatment Planning

radiation treatment planning involves approximately optimizing an imprecise function subject to uncertainties.

+ map all involved non-linear functions into tractable (Hilbert-) space, with quality guarantees, bounds on approximation error

(a) $\hat{\mathbb{E}}[R B E \times D]$ conv, opt.

(c) $\hat{\mathrm{E}}|R B E \times D|$ prop. opt.

+ map all involved non-linear functions into tractable (Hilbert-) space, with quality guarantees, bounds on approximation error
+ track and optimize uncertainties across computation
+ to improve treatment outcome, reduce risk of complications

Estimate z from computations c, under model m.

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

$$
r=\mathrm{E}_{\tilde{f}}\left[\log \frac{p(\tilde{f}(\mathbf{x}))}{p(f(\mathbf{x}))}\right]=(f(\mathbf{x})-\mu(\mathbf{x}))^{\top} K^{-1}(f(\mathbf{x})-\mu(\mathbf{x}))-N
$$

+ computation is inference \rightarrow probabilistic numerical methods
+ probability measures for uncertain inputs and outputs
+ classic methods as special cases

Building numerical methods for contemporary challenges amounts to designing probabilistic models. prior: structural knowledge reduces complexity
likelihood: imprecise computation lowers cost
posterior: uncertainty can be propagated through computations evidence: model mismatch is detectable at run-time
http://probnum.org
https://pn.is.tue.mpg.de

Probabilistic Numerics - Uncertainty in Computation
Hennig, Osborne, Girolami Cambridge University Press, ETA 2019

