

Probabilistic Numerics

Uncertainty in Computation

Philipp Hennig Stuttgart 24 September 2018

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

The Numerics of Data Science & Machine Learning

nonlinear, non-analytic computations dominate the cost of data science

generic methods save design time, but do not address special needs

- + overly generic algorithms are inefficient
- + Big Data-specific challenges not addressed by "classical" methods

Data Science / AI / ML needs to build its own numerical methods. As it turns out, we already have the right concepts! http://probnum.org

[Poincaré 1896, Kimeldorf & Wahba 1970, Diaconis 1988, O'Hagan 1992, . . .

Numerical methods estimate latent quantities given the result of computations.

integration	estimate	$\int_{a}^{b} f(x) dx$	given $\{f(x_i)\}$
linear algebra	estimate	x s.t. Ax = b	given { As = y]
optimization	estimate	x s.t. $\nabla f(x) = 0$	given $\{\nabla f(x_i)\}$
simulation	estimate	x(t) s.t. $x' = f(x, t)$	given $\{f(x_i, t_i)\}$

It is thus possible to build

probabilistic numerical methods

that use probability measures as in- and outputs and assign uncertainty to computation.

Nex Perck Institute for

$$f(x) = \exp(-\sin(3x)^2 - x^2)$$
 $F = \int_{-3}^{3} f(x) \, dx = 3$

A Wiener process prior p(f, F)...

Bayesian Quadrature

[O'Hagan, 1985/1991]

$$p(f) = \mathcal{GP}(f; 0, k) \qquad k(x, x') = \min(x, x') + c$$

$$\Rightarrow p\left(\int_{a}^{b} f(x) dx\right) = \mathcal{N}\left[\int_{a}^{b} f(x) dx; \int_{a}^{b} m(x) dx, \int \int_{a}^{b} k(x, x') dx dx'\right]$$

$$= \mathcal{N}(F; 0, -1/6(b^{3} - a^{3}) + 1/2[b^{3} - 2a^{2}b + a^{3}] - (b - a)^{2}c)$$

4

computation as the collection of information

$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

computation as the collection of information

$$x_t = \arg \min \left[\operatorname{var}_{p(F|x_1,\ldots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\ldots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

computation as the collection of informatior

$$x_t = \arg \min \left[\operatorname{var}_{\rho(F|x_1,\dots,x_{t-1})}(F) \right]$$

... yields the trapezoid rule!

UNIVERSITAT TUBINGEN

[Kimeldorf & Wahba 1975, Diaconis 1988, O'Hagan 1985/1991]

$$\mathsf{E}_{\mathbf{y}}[F] = \int \mathsf{E}_{|\mathbf{y}}[f(x)] \, dx = \sum_{i=1}^{N-1} (x_{i+1} - x_i) \frac{1}{2} (f(x_{i+1}) + f(x_i))$$

- + Trapezoid rule is MAP estimate under Wiener process prior on f
- + regular grid is optimal expected information choice
- + error estimate is under-confident

Max Planck Institute for Intelligent Systems

Bayesian inference on a latent (non-analytic) quantity from computable "observations

Estimate *z* from computations *c*, under model *m*.

$$p(z \mid c, m) = \frac{p(z \mid m)p(c \mid z, m)}{\int p(z \mid m)p(c \mid z, m) dz}$$

Classic methods as basic probabilistic inference

TALL A DIE 1 HOCO VC. LE C.A. WELL

maximum a-posteriori estimation in Gaussian models

Quadrature	1975; Diaconis 1988; O'Hagan 1985/1991]	
Gaussian Quadrature <	→ GP Regression	
Linear Algebra	[Hennig 2014]	
Conjugate Gradients ≺	→ Gaussian Regression	
Nonlinear Optimization	[Hennig & Kiefel 2013]	
BFGS / Quasi-Newton ←	→ Autoregressive Filtering	
Differential Equations Runge-Kutta; Nordsieck Methods <	[Schober, Duvenaud & Hennig 2014; Kerst- ing & Hennig 2016; Schober & Hennig 2016] → Gauss-Markov Filters	

Probabilistic numerical methods can be as fast and reliable as classic ones.

Same story, different task

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use **uncertain initial value** $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

Same story, different task

Intelligent Systems

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use **uncertain initial value** $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

Same story, different task

Intelligent Systems

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use **uncertain initial value** $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

Same story, different task

hter Planck Institute for Intelligent Systems

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use **uncertain initial value** $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

Same story, different task

hter Planck Institute for Intelligent Systems

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use **uncertain initial value** $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

Same story, different task

hter Planck Institute for Intelligent Systems

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use **uncertain initial value** $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

Same story, different task

Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

- + has the same **complexity** as multi-step methods
- + has high local approximation order q (like classic solvers)
- + has calibrated posterior uncertainty (order q + 1/2)
- + can use uncertain initial value $p(x_0) = \mathcal{N}(x_0; m_0, P_0)$

- + Computation is an instance of inference.
- many classic numerical methods can be interpreted as probabilistic inference, arising from specific generative models (prior & likelihood)
- Meaningful (calibrated) uncertainty can be constructed at minimal computational overhead (dominated by cost of point estimate)
- + Designing a numerical method is a modelling task!

The probabilistic viewpoint allows new functionality for contemporary challenges.

New Functionality, and new Challenges

eberhard karls UNIVERSITAT TUBINGEN

making use of the probabilistic numerics perspective

WArped Sequential Active Bayesian Integration (WSABI)

UNIVERSITAT TUBINGEN

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

a prior specifically for integration of probability measures

- + f > 0 (*f* is probability measure)
- + $f \propto \exp(-x^2)$ (*f* is product of prior and likelihood terms)
- + $f \in C^{\infty}$ (*f* is smooth)

Explicit prior knowledge yields reduces complexity.

[cf. information-based complexity. E.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2]

UNIVERSITAT

WArped Sequential Active Bayesian Integration (WSAB

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Max Pence Institute for Intelligent Systems

WArped Sequential Active Bayesian Integration (WSAB

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Muse Planck Institute for Intelligent Systems

WArped Sequential Active Bayesian Integration (WSAB

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

Miss Plants Institute for Intelligent Systems

WArped Sequential Active Bayesian Integration (WSAB

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

UNIVERSITAT

Intelligent Systems

WArped Sequential Active Bayesian Integration (WSABI

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

UNIVERSITAT

Intelligent Systems

WArped Sequential Active Bayesian Integration (WSABI

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

UNIVERSITAT

Intelligent Systems

WArped Sequential Active Bayesian Integration (WSABI

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

UNIVERSITAT

Intelligent Systems

WArped Sequential Active Bayesian Integration (WSABI

[Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

- adaptive node placement
- + scales to, in principle, arbitrary dimensions
- + faster (in wall-clock time) than MCMC

new numerical functionality for machine learning

UNIVERSITAT

Estimate *z* from computations *c*, under model *m*.

The usual assumption:

 $p(c \mid z, m) = \delta(c - A_m z)$

EBERHARD KARLS NIVERSITAT

In Big Data setting, iid. batching introduces Gaussian noise

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i; \theta) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(y_j; \theta) =: \hat{\mathcal{L}}(\theta) \qquad M \ll N$$
$$p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{NM}\right)\right)$$

New numerics for Big Data

Uncertainty on Inputs directly effecting numerical decisions

In Big Data setting, iid. batching introduces Gaussian noise

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i; \boldsymbol{\theta}) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(y_j; \boldsymbol{\theta}) =: \hat{\mathcal{L}}(\boldsymbol{\theta})$$
$$p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{N-M}{NM}\right)\right)$$

Contemporary machine learning requires tedious parameter fitting.

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha_t \nabla \hat{\mathcal{L}}(\boldsymbol{\theta}_t)$$

- + step size / learning rate α_t
- ✤ batch size M
- number of steps to termination
- search directions

YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.

> JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

THIS IS YOUR MACHINE LEARNING SYSTEM?

WHAT IF THE ANSWERS ARE WRONG?

Uncertainty Can Induce Free Parameters

and require new observables to identify them

Balles, Mahsereci, Hennig (ICML-AutoML 2017)]

Intelligent Systems

EBERHARD KARLS

TÜBINGEN

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i; \theta) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(y_j; \theta) =: \hat{\mathcal{L}}(\theta) \qquad M \ll N \qquad p(\hat{\mathcal{L}} \mid \mathcal{L}) \approx \mathcal{N}\left(\hat{\mathcal{L}}; \mathcal{L}, \mathcal{O}\left(\frac{1}{M}\right)\right)$$

Uncertainty Can Induce Free Parameters

and require new observables to identify them

[Balles, Mahsereci, Hennig (ICML-AutoML 2017)]

Capturing the likelihood requires a **new observable**! It's computation is not free, but cheap! But without it, a key algorithmic parameter is **unidentified**!

Choosing Step Sizes in the Presence of Noise

UNIVERSITAT

Probabilistic Line Searches

[Mahsereci & Hennig, NIPS 2015 (oral) / JMLR 2017]

- + $f'(t_{cand}) > 0$? bisect : extend
- + until Wolfe conditions are fulfilled:

 $f(t) < f(0) + c_1 f'(0)$ AND $|f'(t)| < c_2 |f'(0)|$

Probabilistic Line Searches

UNIVERSITÄT TUBINGEN

Intelligent Systems

[Mahsereci & Hennig, NIPS 2015 (oral) / JMLR 2017]

No more Learning Rates!

eberhard karls UNIVERSITAT TUBINGEN

two-layer feed-forward perceptron. Details, additional results: Mahsereci & Hennig, JMLR 18(119):1-59, 2017.

https://github.com/ProbabilisticNumerics/probabilistic_line_search

Choosing Batch Sizes

trading off cost and precision

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i; \theta) \approx \frac{1}{M} \sum_{j=1}^{M} \ell(y_j; \theta) =: \hat{\mathcal{L}}(\theta) \qquad M \ll N$$

- + trade-off: std[$\nabla \hat{\mathcal{L}}$] = $\mathcal{O}(1/\sqrt{M})$, but cost is $\mathcal{O}(M)$
- + for sgd: lower bound on **improvement**: Assume $\nabla \mathcal{L}$ Lipschitz

$$\mathcal{L}(\theta_t) - \mathcal{L}(\theta_{t+1}) \ge G := \alpha \nabla \mathcal{L}(\theta_t)^{\mathsf{T}} \nabla \hat{\mathcal{L}}(\theta_t) - \frac{L\alpha^2}{2} \|\nabla \hat{\mathcal{L}}(\theta_t)\|^2$$
expected improvement: under $p(\hat{\mathcal{L}} \mid \mathcal{L}) \quad \mathbb{E}(G) = \left(\alpha - \frac{L\alpha^2}{2}\right) \|\nabla \mathcal{L}(\theta_t)\|^2 - \frac{L\alpha^2}{2M} \sum_{\ell} \operatorname{var}[\nabla_{\ell} \hat{\mathcal{L}}(\theta_t)]$

maximize expected improvement per cost, let line-search find α = 1/L, some further simplifications (local 2nd order approximation, assert min L ≥ 0),

$$M_* = \arg\max_{M} \frac{\mathbb{E}[G]}{M} \approx \alpha_t \frac{\sum_{\ell} \operatorname{var}[\nabla_{\ell} \hat{\mathcal{L}}(\theta_t)]}{\hat{\mathcal{L}}(\theta_t)}$$

Choosing Batch-Sizes

trading off cost and precision

niversitat 🏅 🌿

Intelligent Systems

3alles, Romero, Hennig, UAI 2017

https://github.com/ProbabilisticNumerics/CABS

- + in empirical risk minimization, just figuring out when to **stop** the optimizer is a non-trivial problem
- + even the full data set is a sample relative to the population
- + **overfitting** becomes a problem when gradients (with their estimatable variance) are statistically indistinguishable to white noise around zero

$$\log p(\nabla \hat{\mathcal{L}} \mid \nabla \mathcal{L} = 0) > \mathsf{E}_{p(\nabla \hat{\mathcal{L}} \mid \nabla \mathcal{L} = 0)} \left[\log p(\nabla \hat{\mathcal{L}} \mid \nabla \mathcal{L} = 0) \right]$$
$$1 - \frac{M}{D} \sum_{\ell=1}^{D} \frac{(\nabla_{\ell} \mathcal{L}(\theta_{\ell}))^{2}}{\operatorname{var} \nabla_{\ell} \hat{\mathcal{L}}(\theta_{\ell})} > 0 \quad \Rightarrow \quad \mathsf{STOP!}$$

Towards Black Box Deep Learning

inferring free parameters by hierarchical inference

+ step sizes

+ batch sizes

https://github.com/ProbabilisticNumerics/cabs

Probabilistic Line Searches for Stochastic Optimization

Coupling Adaptive Batch Sizes with Learning Rates

- + termination criteria Early Stopping without a Validation Set
- + data sub-sampling gives rise to imprecise computations / non-Dirac observations likelihoods
- + free algorithmic parameters may then become un-identified
- + likelihood shape can be identified with minor computational overhead
- classic methods provide a blue-print
- + re-phrasing them probabilistically allow inference on free parameters

r Stochastic Optimization NIPS 2015 https://github.com/ProbabilisticNumerics/probabilistic_line_search

Balles, Romero, Hennig UAI 2017

arXiv 1703 09580

Mahsereci, Balles, Lassner, Hennig

Mahsereci & Hennig

new numerical functionality for machine learning

EBERHARD KARLS NIVERSITAT

Estimate *z* from computations *c*, under model *m*.

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Computational Pipelines

Probabilistic Numerics in the Loop

[Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015]

) Max Planck Institute for Intelligent Systems

EBERHARD KARLS

TUBINGEN

for some recent theory, see Thm. 5.9 in Cockayne, Oates, Sullivan, Girolami. arXiv 1702.03673

Probabilistic Treatment Planning

with M. Bangert @ DKFZ Heidelberg

eberhard karls JNIVERSITAT TÜBINGEN Mar Plant Institute for Systems

images: wikipedia / DKFZ

radiation treatment planning involves **approximately optimizing** an **imprecise** function subject to **uncertainties**.

Propagating Uncertainty through Pipelines

Analytical Probabilistic Treatment Planning – with DKFZ Heidelberg

INIVERSITAT

Intelligent Systems

3angert et al., PMB, 2013, 2016, 2017]

+ map all involved non-linear functions into tractable (Hilbert-) space, with **quality guarantees**, bounds on approximation error

Propagating Uncertainty through Pipelines

Analytical Probabilistic Treatment Planning – with DKFZ Heidelberg

UNIVERSITAT TÜBINGEN

3angert et al., PMB, 2013, 2016, 2017]

- map all involved non-linear functions into tractable (Hilbert-) space, with quality guarantees, bounds on approximation error
- + track and optimize uncertainties across computation
- + to improve treatment outcome, reduce risk of complications

new numerical functionality for machine learning

FBERHARD KARLS NIVERSITAT

Estimate *z* from computations *c*, under model *m*.

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015

Probabilistic Certification

TUBINGEN 🔹 🐨 proof of concept: [Hennig, Osborne, Girolami. Proc. Royal Society A, 2015]

EBERHARD KARLS

$$r = \mathsf{E}_{\tilde{f}}\left[\log \frac{p(\tilde{f}(\mathbf{x}))}{p(f(\mathbf{x}))}\right] = (f(\mathbf{x}) - \mu(\mathbf{x}))^{\mathsf{T}} \mathcal{K}^{-1}(f(\mathbf{x}) - \mu(\mathbf{x})) - N$$

) Intelligent Systems

Summary

Uncertain computation as and for statistical modelling and machine learning

UNIVERSITÄT TÜBINGEN

- + computation is inference → probabilistic numerical methods
 - + probability measures for uncertain inputs and outputs
 - + classic methods as special cases

Building numerical methods for contemporary challenges amounts to designing probabilistic models.

prior: structural knowledge reduces complexity

likelihood: imprecise computation lowers cost

posterior: uncertainty can be propagated through computations

evidence: model mismatch is detectable at run-time

http://probnum.org https://pn.is.tue.mpg.de

Probabilistic Numerics – Uncertainty in Computation Hennig, Osborne, Girolami Cambridge University Press, ETA 2019

