technische universität dortmund

Exponential Families on Resource-Constrained Systems

Bayes Forum, May 4, 2018

Artificial Intelligence Group

Nico Piatkowski

My favorite co-authors at SFB876

Prof. Dr. Katharina Morik

Dr. Sangkyun Lee

Sibylle Hess

Funded by DFG via SFB876: "Providing Information by Resource-Constrained Data Analysis"

SFB 876 Verfügbarkeit von Information durch Analyse unter Ressourcenbeschränkung

Learning on resource-constrained systems

Cluster

Ultra-Low-Power

Learning on resource-constrained systems

Exponential Families

Exponential Families

Unique: Aggregation of data set \mathcal{D} independent of $|\mathcal{D}|$ **iff** p_{θ} belongs to a (generative) exponential family [Pitman/1936a].

Exponential Families as Graphical Models

Let G = (V, E) encode the conditional independence structure of **X**.

$$\frac{1}{Z(\theta)} \underbrace{\prod_{C \in \mathcal{C}} \exp(\langle \theta_C, \phi_C(\mathbf{x}_C) \rangle)}_{\text{Factorization over cliques}} = \underbrace{\exp(\langle \theta, \phi(\mathbf{x}) \rangle - A(\theta))}_{\text{Exponential family}}$$
Normalization
$$A(\theta) = \log Z(\theta) = \log \int_{\mathcal{X}} \exp(\langle \theta, \phi(\mathbf{x}) \rangle) \, \mathrm{d} \, \nu(\mathbf{x})$$

is $\#\mathbf{P}$ -complete (worst-case over G!).

For trees in $\textbf{FP} \Rightarrow$ Variational approximations: Simplify G.

Regularized Learning

Regularization: "give preference to a particular solution with desirable properties"

- Solve ill-posed problems
- Avoid overfitting
- Select relevant (groups of) features

Regularized Learning

Regularization: "give preference to a particular solution with desirable properties"

- Solve ill-posed problems
- Avoid overfitting
- Select relevant (groups of) features

Here: desirable properties \equiv reduced resource consumption

Reduce Resource Consumption via Regularization

1. Reduce Parameter/Memory Complexity

Main influencing factor: $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_{|\mathcal{C}|})$ (*d*-dimensional)

Motivation: Physics [Ising/1925] and natural language processing [Lafferty/etal/2001]:

- Reparametrization: $oldsymbol{ heta}$ is function of low-dimensional Δ
- Parameter sharing: Multiple cliques share the same $heta_C$

Problem: Domain specific (Ferromagnetism/Language model)

Task: Find generic reparametrization/parameter sharing

Temporal Models

Resource-constrained devices collect data over time Multivariate time series: $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_T), \mathbf{X}_i \in \mathcal{Q}^n$ Time-dependent weights: $\boldsymbol{\theta}_C(t)$

Temporal Models

Resource-constrained devices collect data over time Multivariate time series: $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_T), \mathbf{X}_i \in \mathcal{Q}^n$ Time-dependent weights: $\boldsymbol{\theta}_C(t)$

Reduction via Regularized Reparametrization

with $(\alpha_{t,t} = 1)$. Coefficients $\alpha_{i,t}$ control influence of previous time points on $\theta_C(t)$.

Reduction via Regularized Reparametrization

with $(\alpha_{t,t} = 1)$. Coefficients $\alpha_{i,t}$ control influence of previous time points on $\theta_C(t)$.

$$\ell(\mathbf{\Delta}; \mathcal{D}) = \underbrace{-\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} (\langle \boldsymbol{\theta}(\mathbf{\Delta}), \boldsymbol{\phi}(\mathbf{x}) \rangle - A(\boldsymbol{\theta}(\mathbf{\Delta})))}_{\text{Negative avq. log-likelihood}} + \underbrace{\lambda_1 \|\mathbf{\Delta}\|_1 + \frac{\lambda_2}{2} \|\mathbf{\Delta}\|_2^2}_{\text{Regularization}}$$

[Piatkowski/etal/2013] (Machine Learning Journal; Best student paper at ECML-PKDD 2013) [Piatkowski/Schnitzler/2016]

regular

31/4

t/2

Reduction via Regularized Reparametrization

with $(\alpha_{t,t} = 1)$. Coefficients $\alpha_{i,t}$ control influence of previous time points on $\theta_C(t)$.

$$\ell(\mathbf{\Delta}; \mathcal{D}) = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} (\langle \boldsymbol{\theta}(\mathbf{\Delta}), \boldsymbol{\phi}(\mathbf{x}) \rangle - A(\boldsymbol{\theta}(\mathbf{\Delta}))) + \lambda_1 \|\mathbf{\Delta}\|_{1} \|\mathbf{\Delta}\|_{1} \|\mathbf{\Delta}\|_{2} \\ \underbrace{\lambda_1 \|\mathbf{\Delta}\|_{1} \|\mathbf{\Delta}\|_{2}}_{\text{Regularization}}$$

[Piatkowski/etal/2013] (Machine Learning Journal; Best student paper at ECML-PKDD 2013) [Piatkowski/Schnitzler/2016]

Empirical Demonstration (Synthetic Grid)

- Black circle is plain *I*₁-regularization
- Proposed approach achieves higher sparsity at lower error

Empirical Demonstration (Synthetic Grid)

- Black circle is plain *I*₁-regularization
- Proposed approach achieves higher sparsity at lower error

Empirical Demonstration (Intel Lab)

- Black circle is plain *I*₁-regularization
- Proposed approach achieves higher sparsity at lower error

Reduce Resource Consumption via Regularization

2. Reduce Arithmetic Complexity

Evaluating $\exp(\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle - A(\boldsymbol{\theta}))$ requires real-valued arithmetic

Motivation: Empirical work on neural networks [Khan/Hines/1994] and Bayesian network classifiers [Tschiatschek/etal/2012]:

- Truncation: Prune fractional digits of learned parameters
- Restricted parameter set: $\boldsymbol{\theta}_i$ is constrained to a subset of float

Problem: No integer-valued inference / learning procedure

Task: Formalize and devise integer learning for exponential families

Base-2 Exponential Families

Based on a proof from [Pitman/1936a]:

$$p_{\boldsymbol{\theta}}(\mathbf{X} = \mathbf{x}) = 2^{\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle - A_2(\boldsymbol{\theta})}$$

Equivalent to base-*e* model.

• $\boldsymbol{\theta} \in \mathbb{N}^d \Rightarrow$ integer arithmetic suffices.

Base-2 Exponential Families

Based on a proof from [Pitman/1936a]:

$$p_{\boldsymbol{\theta}}(\mathbf{X} = \mathbf{x}) = 2^{\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle - A_2(\boldsymbol{\theta})}$$

Equivalent to base-*e* model.

• $\boldsymbol{\theta} \in \mathbb{N}^d \Rightarrow$ integer arithmetic suffices.

Motivated by belief propagation: Bit-Length Propagation

$$b_{v \to u}(x_u) = \mathsf{bitLength} \sum_{x_v \in \mathcal{X}_v} 2^{\theta_{(v,u)=(x_v,x_u)} + \sum_{w \in \mathcal{N}(v) \setminus \{u\}} b_{w \to v}(x_v)}$$

Kullback-Leibler divergence depends on longest path and degree.

[Piatkowski/etal/2016a] (Neurocomputing Journal; Selected paper at ICPRAM 2014)

Base-2 Exponential Families

Based on a proof from [Pitman/1936a]:

$$p_{\boldsymbol{\theta}}(\mathbf{X} = \mathbf{x}) = 2^{\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle - A_2(\boldsymbol{\theta})}$$

Equivalent to base-*e* model.

• $\boldsymbol{\theta} \in \mathbb{N}^d \Rightarrow$ integer arithmetic suffices.

Motivated by belief propagation: Bit-Length Propagation

$$b_{v \to u}(x_u) = \text{bitLength} \sum_{x_v \in \mathcal{X}_v} 2^{\theta_{(v,u)=(x_v,x_u)} + \sum_{w \in \mathcal{N}(v) \setminus \{u\}} b_{w \to v}(x_v)}$$

Kullback-Leibler divergence depends on longest path and degree

[Piatkowski/etal/2016a] (Neurocomputing Journal; Selected paper at ICPRAM 2014)

Empirical Demonstration (Marginals)

Increased parameter variance decreases estimation error

Integer Regularization

Non-smooth non-convex minimization via proximal method [Bolte/etal/2014]: $\boldsymbol{\theta}^{(j+1)} = \operatorname{prox}_{\lambda R_{int}}(\boldsymbol{\theta}^{(j)} + \eta \nabla \ell(\boldsymbol{\theta}; \mathcal{D}))$

$$\operatorname{prox}_{\lambda R_{\operatorname{int}}}(\boldsymbol{\theta})_{i} := \begin{cases} \operatorname{round}(\boldsymbol{\theta}_{i}) & \text{, if } |\omega - \boldsymbol{\theta}_{i}| \leq 2\lambda \\ \boldsymbol{\theta}_{i} + 2\lambda & \text{, else if } \omega > \boldsymbol{\theta}_{i} \\ \boldsymbol{\theta}_{i} - 2\lambda & \text{, else if } \omega < \boldsymbol{\theta}_{i} \end{cases}$$

with $\omega := \arg \min_{u \in \mathbb{N}} |u - \boldsymbol{\theta}_i|$. $\lambda \ge 1/4$ ensures integrality!

Integer Regularization

Non-smooth non-convex minimization via proximal method [Bolte/etal/2014]: $\boldsymbol{\theta}^{(j+1)} = \operatorname{prox}_{\lambda R_{int}}(\boldsymbol{\theta}^{(j)} + \eta \nabla \ell(\boldsymbol{\theta}; \mathcal{D}))$

with $\omega := \arg\min_{u \in \mathbb{N}} |u - \boldsymbol{\theta}_i|$. $\lambda \geq 1/4$ ensures integrality!

Empirical Demonstration (Learning)

• Maintain low error while achieving $\approx 10 \times$ speed-up on cluster hardware.

Empirical Demonstration (Learning)

• Maintain low error while achieving $\approx 10 \times$ speed-up on cluster hardware.

Reduce Resource Consumption via Regularization

3. Reduce Computational Complexity

Evaluating $A(\theta)$ is **#P**-complete

Motivation: Variational inference [Wainwright/Jordan/2008] and discrete integration by hashing [Ermon/2013]:

- Variational: Minimize KL to "simpler" surrogate
- WISH: Randomized Riemann sum approximation to $Z(\theta)$

Problem 1: No error bounds for simplification.Problem 2: Tight bounds for discrete integration but still NP-hard.

Task: Find a way to trade quality against complexity.

Based on numerical integration [Clenshaw/Curtis/1960]:

$$I[f] = \int f(x) \, \mathrm{d} \, x \approx \int \hat{f}(x) \, \mathrm{d} \, x = \hat{I}[f]$$

Error is bounded when $\|\hat{f} - f\|_{\infty}$ is upper bounded.

[Piatkowski/Morik/2016] (ICML 2016)

Based on numerical integration [Clenshaw/Curtis/1960]:

$$I[f] = \int f(x) \, \mathrm{d} \, x \approx \int \hat{f}(x) \, \mathrm{d} \, x = \hat{I}[f]$$

Error is bounded when $\|\hat{f} - f\|_{\infty}$ is upper bounded.

Degree-k polynomial approximation \hat{f}_k for $f(\mathbf{x}) = \exp(\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle)$:

$$\hat{Z}_{k}(\boldsymbol{\theta}) = \int_{\mathcal{X}} \hat{f}_{k}(\mathbf{x}) \, \mathrm{d}\, \nu(\mathbf{x}) = \sum_{i=0}^{i} \mathbf{c}_{i} \sum_{\mathbf{j} \in [d]^{i}} \prod_{l=1}^{i} \boldsymbol{\theta}_{\mathbf{j}(l)} \underbrace{\int_{\mathcal{X}} \prod_{l=1}^{i} \phi_{\mathbf{j}(l)} \, \mathrm{d}\, \nu(\mathbf{x})}_{\text{Independent of } \boldsymbol{\theta}}$$

[Piatkowski/Morik/2016] (ICML 2016)

Based on numerical integration [Clenshaw/Curtis/1960]:

$$I[f] = \int f(x) \, \mathrm{d} \, x \approx \int \hat{f}(x) \, \mathrm{d} \, x = \hat{I}[f]$$

Error is bounded when $\|\hat{f} - f\|_{\infty}$ is upper bounded.

Degree-k polynomial approximation \hat{f}_k for $f(\mathbf{x}) = \exp(\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle)$:

$$\hat{Z}_{k}(\boldsymbol{\theta}) = \int_{\mathcal{X}} \hat{f}_{k}(\mathbf{x}) \, \mathrm{d} \, \nu(\mathbf{x}) = \sum_{i \neq 0}^{i} \mathbf{c}_{i} \sum_{j \neq [d]^{i}} \prod_{l=1}^{i} \boldsymbol{\theta}_{j(l)} \underbrace{\int_{\mathcal{X}} \prod_{l=1}^{i} \boldsymbol{\varphi}_{j(l)} \, \mathrm{d} \, \nu(\mathbf{x})}_{\text{Independent of } \boldsymbol{\theta}}$$

[Piatkowski/Morik/2016] (ICML 2016)

Based on numerical integration [Clenshaw/Curtis/1960]:

$$I[f] = \int f(x) \, \mathrm{d} \, x \approx \int \hat{f}(x) \, \mathrm{d} \, x = \hat{I}[f]$$

Error is bounded when $\|\hat{f} - f\|_{\infty}$ is upper bounded.

Degree-k polynomial approximation \hat{f}_k for $f(\mathbf{x}) = \exp(\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle)$:

$$\hat{Z}_{k}(\boldsymbol{\theta}) = \int_{\mathcal{X}} \hat{f}_{k}(\mathbf{x}) \, \mathrm{d} \, \nu(\mathbf{x}) = \sum_{i \neq 0}^{i} \mathbf{c}_{i} \sum_{\mathbf{j} \neq [d]^{i}} \prod_{l=1}^{i} \boldsymbol{\theta}_{\mathbf{j}(l)} \mathbf{x}^{i}(\mathbf{j})$$

[Piatkowski/Morik/2016] (ICML 2016)

Closed-form of $\chi^{i}(\mathbf{j})$ for various models!

Based on numerical integration [Clenshaw/Curtis/1960]:

$$I[f] = \int f(x) \, \mathrm{d} \, x \approx \int \hat{f}(x) \, \mathrm{d} \, x = \hat{I}[f]$$

Error is bounded when $\|\hat{f} - f\|_{\infty}$ is upper bounded.

Degree-k polynomial approximation \hat{f}_k for $f(\mathbf{x}) = \exp(\langle \boldsymbol{\theta}, \boldsymbol{\phi}(\mathbf{x}) \rangle)$:

$$\hat{Z}_k(\boldsymbol{\theta}) = \int_{\mathcal{X}} \hat{f}_k(\mathbf{x}) \,\mathrm{d}\,\nu(\mathbf{x}) = \sum_{i=0}^i \mathbf{c}_i \sum_{\mathbf{j} \in [d]^i} \prod_{l=1}^i \boldsymbol{\theta}_{\mathbf{j}(l)} \chi^i(\mathbf{j})$$

[Piatkowski/Morik/2016] (ICML 2016)

Closed-form of $\chi^i(\mathbf{j})$ for $\chi^i(\mathbf{j})$ models!

Randomization

Enumerating $[d]^i$ in **FP** but still expensive for large d, i. Define random variables I and **J** with

$$\mathbb{P}_{\mathbf{c}}(I=i) = \frac{|\mathbf{c}_i| \|\chi^i\|_1}{\tau} \quad \mathbb{P}(\mathbf{J}=\mathbf{j} \mid I=i) = \frac{\chi^i(\mathbf{j})}{\|\chi^i\|_1}$$

with $\tau = \sum_{j=0}^{k} |\mathbf{c}_{j}| \|\chi^{j}\|_{1}$ and $\|\chi^{i}\|_{1} = \sum_{\mathbf{j} \in [d]^{i}} |\chi^{i}(\mathbf{j})|$. Then

$$\mathbb{E}_{I,\mathsf{J}}\left[\tau\operatorname{sgn}(\mathbf{c}_{I})\prod_{r=0}^{I}\boldsymbol{\theta}_{\mathsf{J}_{r}}\right]=\hat{Z}_{k}(\boldsymbol{\theta})$$

Sampling I and $\mathbf{J} \Rightarrow$ Monte Carlo algorithm for $\hat{Z}_k(\boldsymbol{\theta})$

Randomization

Enumerating $[d]^i$ in **FP** but still expensive for large d, i. Define random variables I and **J** with

$$\mathbb{P}_{\mathbf{c}}(I=i) = \frac{|\mathbf{c}_i| \|\chi^i\|_1}{\tau} \quad \mathbb{P}(\mathbf{J}=\mathbf{j} \mid I=i) = \frac{\chi^i(\mathbf{j})}{\|\chi^i\|_1}$$

with $\tau = \sum_{j=0}^{k} |\mathbf{c}_{j}| \|\chi^{j}\|_{1}$ and $\|\chi^{i}\|_{1} = \sum_{\mathbf{j} \in [d]^{i}} |\chi^{i}(\mathbf{j})|$. Then

$$\mathbb{E}_{I,\mathsf{J}}\left[\tau\operatorname{sgn}(\mathbf{c}_{I})\prod_{r=0}^{I}\boldsymbol{\theta}_{\mathsf{J}_{r}}\right]=\hat{Z}_{k}(\boldsymbol{\theta})$$

Sampling *I* and $\mathbf{J} \Rightarrow$ Monte Carlo algorithm for $\hat{Z}_k(\boldsymbol{\theta})$ \Rightarrow Approximation to $Z(\boldsymbol{\theta})$ via error bound on \hat{f}_k

Randomization

Enumerating $[d]^i$ in **FP** but still expensive for large d, i. Define random variables I and **J** with

$$\mathbb{P}_{\mathbf{c}}(I=i) = \frac{|\mathbf{c}_i| \|\chi^i\|_1}{\tau} \quad \mathbb{P}(\mathbf{J}=\mathbf{j} \mid I=i) = \frac{\chi^i(\mathbf{j})}{\|\chi^i\|_1}$$

with $\tau = \sum_{j=0}^{k} |\mathbf{c}_{j}| \|\chi^{j}\|_{1}$ and $\|\chi^{i}\|_{1} = \sum_{\mathbf{j} \in [d]^{i}} |\chi^{i}(\mathbf{j})|$. Then

$$\mathbb{E}_{I,\mathsf{J}}\left[\tau\operatorname{sgn}(\mathbf{c}_{I})\prod_{r=0}^{I}\boldsymbol{\theta}_{\mathsf{J}_{r}}\right]=\hat{Z}_{k}(\boldsymbol{\theta})$$

Sampling *I* and **J** \Rightarrow Monte Carlo algorithm for \hat{f}_k \Rightarrow Approximation to $Z(\theta)$ via bound on \hat{f}_k

Empirical Demonstration (Log-Partition Function)

- Error decreases with increasing polynomial degree
- When $\|\boldsymbol{\theta}\|_2$ is low: Number of samples dominates error
- When $\| \boldsymbol{\theta} \|_2$ is large: Polynomial approximation dominates error

Empirical Demonstration (Log-Partition Function)

Error decreases with increasing polynomial degree

- When $\|\boldsymbol{\theta}\|_2$ is low: Number of samples dominates error
- When $\| \boldsymbol{\theta} \|_2$ is large: Polynomial approximation dominates error

Empirical Demonstration (ULP device)

Memory:

Data	d	None	I_1 -Reg.	Reparam. [KiB]
Chain	1066.68	4266.72	247.52	202.08
Star	1084.0	4336.0	201.6	197.44
Grid	1037.8	4151.2	277.92	199.04
Full	843.8	3375.2	257.92	181.6

Runtime:

Data	E	LBP (1 iter)	BLprop (1 iter)	SQM (1 sample) [ms]
Chain	15	1156.2	19.0	350.3
Star	15	1140.4	19.0	393.1
Grid	24	1838.1	29.5	445.3
Full	120	9642.1	141.2	1549.7

Conclusion

- Proposed methods
 - arose from studying the model perspective
 - work with all exponential family members

- keep the conditional independence structure intact

- Towards machine learning on resource-constrained systems:
 - Increase sparsity by > 10 imes
 - Decrease runtime > **60** \times on ULP hardware
- New regularization and probabilistic inference techniques (with error bounds)

