Variational Bayesian inference for stochastic processes

Manfred Opper, Al group, TU Berlin

October 13, 2017

Manfred Opper, Al group, TU Berlin (TU Be

- Probabilistic inference ("inverse problem")
- Why it is not trivial ...
- Variational Approximation
- Path inference for stochastic differential equations
- Drift estimation
- Outlook

- Observations $y \equiv (y_1, \ldots, y_K)$ ("data")
- Latent, unobserved variables $x \equiv (x_1, \ldots, x_N)$
- Likelihood p(y|x) forward model
- Prior distribution p(x)

- Observations $y \equiv (y_1, \ldots, y_K)$ ("data")
- Latent, unobserved variables $x \equiv (x_1, \dots, x_N)$
- Likelihood p(y|x) forward model
- Prior distribution p(x)
- Inverse problem: Make predictions on x given observations using Bayes rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

- Observations $y \equiv (y_1, \ldots, y_K)$ ("data")
- Latent, unobserved variables $x \equiv (x_1, \dots, x_N)$
- Likelihood p(y|x) forward model
- Prior distribution p(x)
- Inverse problem: Make predictions on x given observations using Bayes rule:

$$p(x|y) = rac{p(y|x)p(x)}{p(y)}$$

• Easy ?

Not quite ...

• Often easy to write down the posterior of all hidden variables

$$p(x_1,\ldots,x_N|\mathsf{data}) = rac{p(\mathsf{data}|x_1,\ldots,x_N)p(x_1,\ldots,x_N)}{p(\mathsf{data})}$$

Not quite ...

• Often easy to write down the posterior of all hidden variables

$$p(x_1,\ldots,x_N|\mathsf{data}) = rac{p(\mathsf{data}|x_1,\ldots,x_N)p(x_1,\ldots,x_N)}{p(\mathsf{data})}$$

• But what we really need are marginal distributions eg.

$$p(x_i|\text{data}) = \int dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_N \ \frac{p(\text{data}|x_1, \dots, x_N)p(x_1, \dots, x_N)}{p(\text{data})}$$

and

$$p(data) = \int dx_1 \dots dx_N p(data|x_1, \dots, x_N) p(x_1, \dots, x_N)$$

Variational approximation

• Approximate intractable posterior

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

by q(x) which belongs to a family of simpler tractable distributions.

Variational approximation

• Approximate intractable posterior

$$p(x|y) = rac{p(y|x)p(x)}{p(y)}$$

by q(x) which belongs to a family of simpler tractable distributions.
Optimise q by minimising the Kullback–Leibler divergence (relative entropy)

$$D_{\mathcal{K}\mathcal{L}}[q\|p(\cdot|y)] \doteq E_q \left[\ln \frac{q(x)}{p(x|y)} \right] = D_{\mathcal{K}\mathcal{L}}[q\|p] - E_q[\ln p(y|x)] + \ln p(y)$$

Variational approximation

• Approximate intractable posterior

$$p(x|y) = rac{p(y|x)p(x)}{p(y)}$$

by q(x) which belongs to a family of simpler tractable distributions.
Optimise q by minimising the Kullback–Leibler divergence (relative entropy)

$$D_{\mathcal{K}\mathcal{L}}[q\|p(\cdot|y)] \doteq E_q \left[\ln \frac{q(x)}{p(x|y)} \right] = D_{\mathcal{K}\mathcal{L}}[q\|p] - E_q[\ln p(y|x)] + \ln p(y)$$

• Minimize the variational free energy

$$\mathcal{F}[q] = D_{\mathcal{KL}}[q\|p] - E_q[\ln p(y|x)] \ge -\ln p(y)$$

(Feynman, Peierls, Bogolubov, Kleinert...)

- Let $p(x|y) = \frac{1}{Z} e^{-H(x)}$ and $q(x) = \frac{1}{Z_0} e^{-H_0(x)}$
- The variational bound on the free energy is

$$-\ln Z \leq -\ln Z_0 + E_q[H(x)] - E_q[H_0(x)] = \mathcal{F}[q]$$

- Equivalent to first order perturbation theory around H_0
- Well known approximations: Gaussian, factorising ("mean field").

Example: Fimite dim Gaussian variational densities

$$q(\mathbf{x}) = (2\pi)^{-N/2} |\mathbf{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right).$$

The variational free energy becomes

$$\mathcal{F}[q] = -\frac{N}{2}\log 2\pi - \frac{1}{2}\log |\mathbf{\Sigma}| - \frac{N}{2} - E_q[\log p(\mathbf{y}, \mathbf{x})]$$

Example: Fimite dim Gaussian variational densities

$$q(\mathbf{x}) = (2\pi)^{-N/2} |\mathbf{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right).$$

The variational free energy becomes

$$\mathcal{F}[q] = -\frac{N}{2}\log 2\pi - \frac{1}{2}\log |\mathbf{\Sigma}| - \frac{N}{2} - E_q[\log p(\mathbf{y}, \mathbf{x})]$$

Taking derivatives w.r.t. variational parameters

$$0 = E_q \left[\nabla_{\mathbf{x}} \log p(\mathbf{y}, \mathbf{x}) \right]$$
$$(\mathbf{\Sigma}^{-1})_{ij} = -E_q \left[\frac{\partial^2 \log p(\mathbf{y}, \mathbf{x})}{\partial x_i \partial x_j} \right]$$

Stochastic differential equation

Prior process: Stochastic differential equations (SDE)

• Mathematicians prefer Ito version

$$dX_t = \underbrace{f(X_t)}_{\text{Drift}} dt + \underbrace{D^{1/2}(X_t)}_{\text{Diffusion}} \times \underbrace{dW_t}_{\text{Wiener process}}$$
for $X_t \in R^d$

• Limit of discrete time process X_k

$$X_{k+1} - X_k = f(X_k)\Delta t + D^{1/2}(X_k)\sqrt{\Delta t} \epsilon_k$$
.

 ϵ_k i.i.d. Gaussian.

Path with observations.

Inference of unobserved path.

• State estimation (smoothing:) $p[X_t|\{y_i\}_{i=1}^N, \theta]$

What we would like to do

- State estimation (smoothing:) $p[X_t|\{y_i\}_{i=1}^N, \theta]$
- Use **Bayes rule** for conditional distribution over **paths** $X_{0:T}$ (∞ dimensional object)

$$p(X_{0:T}|\{y_i\}_{i=1}^N, \theta) = \underbrace{p_{prior}(X_{0:T}|\theta)}_{\text{dynamics}} \underbrace{\prod_{n=1}^N p(y_n|X_{t_n})}_{\text{observation model}} / p(\{y_i\}_{i=1}^N|\theta)$$

What we would like to do

- State estimation (smoothing:) $p[X_t|\{y_i\}_{i=1}^N, \theta]$
- Use **Bayes rule** for conditional distribution over **paths** $X_{0:T}$ (∞ dimensional object)

$$p(X_{0:T}|\{y_i\}_{i=1}^N, \theta) = \underbrace{p_{prior}(X_{0:T}|\theta)}_{\text{dynamics}} \underbrace{\prod_{n=1}^N p(y_n|X_{t_n})}_{\text{observation model}} / p(\{y_i\}_{i=1}^N|\theta)$$

Parameter estimation:

- **1** Maximum Likelihood: Maximise $p(\{y_i\}_{i=1}^N | \theta)$ with respect to θ
- Bayes: Use prior over parameters p(θ) to compute p(θ|{y_i}^N_{i=1}) ∝ p({y_i}^N_{i=1}|θ)p(θ)

Example: Process conditioned on endpoint

14 / 28

• Conditioned process is also Markovian!

- Conditioned process is also Markovian!
- It fulfils SDE

$$dX_t = g(X_t, t)dt + D^{1/2}(X_t) dW_t$$

with a new time dependent drift $g(X_t, t)$ but the same diffusion D.

- Conditioned process is also Markovian!
- It fulfils SDE

$$dX_t = g(X_t, t)dt + D^{1/2}(X_t) dW_t$$

with a new time dependent drift $g(X_t, t)$ but the same diffusion D.

• Previous example: $g(x, t) = -\frac{x}{T-t}$ for 0 < t < T.

Change of measure theorem and KL divergence for path probabilities

Girsanov theorem

$$\frac{dQ}{dP}(X_{0:T}) = \exp\left\{-\int_0^T (f-g)^\top D^{-1/2} \ dB_t + \frac{1}{2}\int_0^T \|f-g\|_D^2 \ dt\right\}$$

 B_t : Wiener process with respect to Q and $||f - g||_D = f^\top(x, t)D^{-1}g(x, t)$

Change of measure theorem and KL divergence for path probabilities

Girsanov theorem

$$\frac{dQ}{dP}(X_{0:T}) = \exp\left\{-\int_0^T (f-g)^\top D^{-1/2} \ dB_t + \frac{1}{2}\int_0^T \|f-g\|_D^2 \ dt\right\}$$

- B_t : Wiener process with respect to Q and $\|f - g\|_D = f^\top(x, t)D^{-1}g(x, t)$
- Let Q and P be measures over paths for SDEs with drifts g(X, t) and f(X, t) having the same diffusion D(X). Then

$$D\left[Q\|P\right] = E_Q \ln \frac{dQ}{dP} = \frac{1}{2} \int_0^T dt \left\{ \int dx \ q(x,t) \ \|g(x,t) - f_\theta(x)\|^2 \right\}$$

q(x, t) is the marginal density of X_t .

The (full) variational problem

• Minimise variational free energy $\mathcal{F}(Q) =$

$$= \frac{1}{2} \int_0^T \int q(x,t) \left\{ \|g(x,t) - f_\theta(x)\|^2 - \sum_i \delta(t-t_i) \ln p(y_i|x) \right\} dx dt$$

with respect to the posterior drift g(x, t).

The (full) variational problem

• Minimise variational free energy $\mathcal{F}(Q) =$

$$=\frac{1}{2}\int_0^T\int q(x,t)\left\{\|g(x,t)-f_\theta(x)\|^2 -\sum_i\delta(t-t_i)\ln p(y_i|x)\right\}dx dt$$

with respect to the posterior drift g(x, t).

• The marginal density q(x, t) and the drift g(x, t) are coupled through the **Fokker** - **Planck** equation

$$\frac{\partial q(x,t)}{\partial t} = \left\{-\sum_{k} \partial_{k} g_{k}(x) + \frac{1}{2} \sum_{kl} \partial_{k} \partial_{l} D_{kl}(x)\right\} q(x,t)$$

Variation leads to forward–backward PDEs: KSP equations (Kushner '62, Stratonovich '60 & Pardoux '82).

The Variational Gaussian Approximation for SDE

(Archambeau, Cornford, Opper & Shawe - Taylor, 2007)

• Approximate (Gaussian) process over paths X_{0:T} induced by linear SDE:

$$dX_t = \{A(t)X_t + b(t)\} dt + D^{1/2}dW$$

- Diffusion *D* must be independent of *X* !
- Cost function (action) is of the form $\mathcal{F}_{\theta}[m, S, A, b]$.

The Variational Gaussian Approximation for SDE

(Archambeau, Cornford, Opper & Shawe - Taylor, 2007)

• Approximate (Gaussian) process over paths X_{0:T} induced by linear SDE:

$$dX_t = \{A(t)X_t + b(t)\} dt + D^{1/2}dW$$

- Diffusion *D* must be independent of *X* !
- Cost function (action) is of the form $\mathcal{F}_{\theta}[m, S, A, b]$.
- Constraints are evolution eqs. for marginal **mean** m(t) and **covariance** S(t)

$$rac{dm}{dt} = Am + b$$

 $rac{dS}{dt} = AS + SA^{ op} + D.$

 \rightarrow nonlinear ODEs instead of PDEs !

Prediction & comparison with hybrid Monte Carlo

Manfred Opper, Al group, TU Berlin (TU Be

Breakdown for large observation noise

Manfred Opper, Al group, TU Berlin (TU Be

Variational approximation

Variational inference for higher dimensions: Mean field approximation

Action functional (Vrettas, Opper & Cornford, 2015) for mean $m_i(t)$ and variance $s_i(t)$ (compare to Onsager–Machlup)

$$\mathcal{F}_{\theta}[q] = \sum_{i=1}^{d} \frac{1}{2\sigma_i^2} \int_0^T E_q \left[(\dot{m}_i - f_i(X_t))^2 \right] dt$$
$$+ \sum_{i=1}^{d} \frac{1}{2\sigma_i^2} \int_0^T \left\{ \frac{(\dot{s}_i - \sigma_i^2)^2}{4s_i^2} + (\sigma_i^2 - \dot{s}_i) E_q \left[\frac{\partial f_i(X_t)}{\partial X_t^i} \right] \right\} dt$$
$$- \sum_{j=1}^n E_q \left[\ln p(y_j | X_{t_j}) \right]$$

Variational inference for higher dimensions: Mean field approximation

Action functional (Vrettas, Opper & Cornford, 2015) for mean $m_i(t)$ and variance $s_i(t)$ (compare to Onsager–Machlup)

$$\mathcal{F}_{\theta}[q] = \sum_{i=1}^{d} \frac{1}{2\sigma_i^2} \int_0^T E_q \left[(\dot{m}_i - f_i(X_t))^2 \right] dt$$
$$+ \sum_{i=1}^{d} \frac{1}{2\sigma_i^2} \int_0^T \left\{ \frac{(\dot{s}_i - \sigma_i^2)^2}{4s_i^2} + (\sigma_i^2 - \dot{s}_i) E_q \left[\frac{\partial f_i(X_t)}{\partial X_t^i} \right] \right\} dt$$
$$- \sum_{i=1}^n E_q \left[\ln p(y_i | X_{t_i}) \right]$$

Test on Lorenz 1998 model: $\mathbf{x} = (x^1, \dots, x^d)$ with

$$\frac{dx_t^i}{dt} = (x^{i+1} - x^{i-2}) x^{i-1} - x^i + \theta + \xi^i(t)$$

System of 1000 SDE with only 350 components observed.

Nonparametric drift estimation

 Reconsider SDE dX = f(X)dt + σdW: Infer the function f(·) under smoothness assumptions from observations of the process X.

Nonparametric drift estimation

- Reconsider SDE dX = f(X)dt + σdW: Infer the function f(·) under smoothness assumptions from observations of the process X.
- Idea (see e.g. Papaspilioupoulis, Pokern, Roberts & Stuart (2012) Assume a Gaussian Process prior f(·) ~ GP(0, K) with covariance kernel K(x, x').

Basic idea

• Euler discretization of SDE $X_{t+\Delta} - X_t = f(X_t)\Delta + \sqrt{\Delta} \epsilon_t$, for $\Delta \to 0$.

Basic idea

- Euler discretization of SDE $X_{t+\Delta} - X_t = f(X_t)\Delta + \sqrt{\Delta} \epsilon_t$, for $\Delta \to 0$.
- Likelihood (assume **densely observed** path $X_{0:T}$) is Gaussian

$$p(X_{0:T}|f) \propto \exp\left[-\frac{1}{2\Delta}\sum_{t}||X_{t+\Delta} - X_{t}||^{2}\right] \times \\ \exp\left[-\frac{1}{2}\sum_{t}||f(X_{t})||^{2}\Delta + \sum_{t}f(X_{t})\cdot(X_{t+\Delta} - X_{t})\right].$$

- Posterior process is also a GP with analytical solution.
- For sparse observations (Δ not small) one needs to impute unobserved path X_{0:T} between observations e.g. within an (approximate) EM–algorithm (Ruttor, Batz, Opper, 2013).

A simple pendulum

$$dX = Vdt,$$

$$dV = \frac{-\gamma V + mg/\sin(X)}{ml^2}dt + d^{1/2}dW_t,$$

A simple pendulum

$$dX = Vdt,$$

$$dV = \frac{-\gamma V + mg/\sin(X)}{ml^2}dt + d^{1/2}dW_t,$$

N = 4000 data points (x, v) with $\Delta t = 0.3$ and known diffusion constant d = 1.

• Bias of approximation ?

• Bias of approximation ? Not easy, because D_{KL} only known up to a constant !

- Bias of approximation ? Not easy, because D_{KL} only known up to a constant !
- Get rid of bias by using *q* as informative proposal within MCMC sampler.

- Bias of approximation ? Not easy, because D_{KL} only known up to a constant !
- Get rid of bias by using *q* as informative proposal within MCMC sampler.
- More general infinite dimensional problems (F. Pinski, G. Simpson, A.M. Stuart, H. Weber, 2015)

- Bias of approximation ? Not easy, because D_{KL} only known up to a constant !
- Get rid of bias by using *q* as informative proposal within MCMC sampler.
- More general infinite dimensional problems (F. Pinski, G. Simpson, A.M. Stuart, H. Weber, 2015)
- Inference for SDE beyond Gaussian approximation (T.Sutter, A. Ganguly and Heinz Koeppl, 2016). Allows for state dependent diffusion.

Dan Cornford & Michail Vrettas (Aston U) Andreas Ruttor, Florian Stimberg, Philipp Batz (TUB)