Variational Bayesian inference for stochastic processes

Manfred Opper, AI group, TU Berlin

October 13, 2017

Outline

- Probabilistic inference ("inverse problem")
- Why it is not trivial ...
- Variational Approximation
- Path inference for stochastic differential equations
- Drift estimation
- Outlook

Probabilistic inference

- Observations $y \equiv\left(y_{1}, \ldots, y_{K}\right)$ ("data")
- Latent, unobserved variables $x \equiv\left(x_{1}, \ldots, x_{N}\right)$
- Likelihood $p(y \mid x)$ forward model
- Prior distribution $p(x)$

Probabilistic inference

- Observations $y \equiv\left(y_{1}, \ldots, y_{K}\right)$ ("data")
- Latent, unobserved variables $x \equiv\left(x_{1}, \ldots, x_{N}\right)$
- Likelihood $p(y \mid x)$ forward model
- Prior distribution $p(x)$
- Inverse problem: Make predictions on x given observations using Bayes rule:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Probabilistic inference

- Observations $y \equiv\left(y_{1}, \ldots, y_{K}\right)$ ("data")
- Latent, unobserved variables $x \equiv\left(x_{1}, \ldots, x_{N}\right)$
- Likelihood $p(y \mid x)$ forward model
- Prior distribution $p(x)$
- Inverse problem: Make predictions on x given observations using Bayes rule:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

- Easy ?

Not quite ...

- Often easy to write down the posterior of all hidden variables

$$
p\left(x_{1}, \ldots, x_{N} \mid \text { data }\right)=\frac{p\left(\text { data } \mid x_{1}, \ldots, x_{N}\right) p\left(x_{1}, \ldots, x_{N}\right)}{p(\text { data })}
$$

Not quite ...

- Often easy to write down the posterior of all hidden variables

$$
p\left(x_{1}, \ldots, x_{N} \mid \text { data }\right)=\frac{p\left(\text { data } \mid x_{1}, \ldots, x_{N}\right) p\left(x_{1}, \ldots, x_{N}\right)}{p(\text { data })}
$$

- But what we really need are marginal distributions eg.

$$
\begin{gathered}
p\left(x_{i} \mid \text { data }\right)= \\
\int d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{N} \frac{p\left(\operatorname{data} \mid x_{1}, \ldots, x_{N}\right) p\left(x_{1}, \ldots, x_{N}\right)}{p(\text { data })}
\end{gathered}
$$

- and

$$
p(\text { data })=\int d x_{1} \ldots \ldots d x_{N} p\left(\text { data } \mid x_{1}, \ldots, x_{N}\right) p\left(x_{1}, \ldots, x_{N}\right)
$$

Variational approximation

- Approximate intractable posterior

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

by $q(x)$ which belongs to a family of simpler tractable distributions.

Variational approximation

- Approximate intractable posterior

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

by $q(x)$ which belongs to a family of simpler tractable distributions.

- Optimise q by minimising the Kullback-Leibler divergence (relative entropy)

$$
\begin{aligned}
& D_{K L}[q \| p(\cdot \mid y)] \doteq E_{q}\left[\ln \frac{q(x)}{p(x \mid y)}\right]= \\
& D_{K L}[q \| p]-E_{q}[\ln p(y \mid x)]+\ln p(y)
\end{aligned}
$$

Variational approximation

- Approximate intractable posterior

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

by $q(x)$ which belongs to a family of simpler tractable distributions.

- Optimise q by minimising the Kullback-Leibler divergence (relative entropy)

$$
\begin{aligned}
& D_{K L}[q \| p(\cdot \mid y)] \doteq E_{q}\left[\ln \frac{q(x)}{p(x \mid y)}\right]= \\
& D_{K L}[q \| p]-E_{q}[\ln p(y \mid x)]+\ln p(y)
\end{aligned}
$$

- Minimize the variational free energy

$$
\mathcal{F}[q]=D_{K L}[q \| p]-E_{q}[\ln p(y \mid x)] \geq-\ln p(y)
$$

The variational approximation in statistical physics

(Feynman, Peierls, Bogolubov, Kleinert...)

- Let $p(x \mid y)=\frac{1}{Z} e^{-H(x)}$ and $q(x)=\frac{1}{Z_{0}} e^{-H_{0}(x)}$
- The variational bound on the free energy is

$$
-\ln Z \leq-\ln Z_{0}+E_{q}[H(x)]-E_{q}\left[H_{0}(x)\right]=\mathcal{F}[q]
$$

- Equivalent to first order perturbation theory around H_{0}
- Well known approximations: Gaussian, factorising (" mean field").

Example: Fimite dim Gaussian variational densities

$$
q(\mathbf{x})=(2 \pi)^{-N / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) .
$$

The variational free energy becomes

$$
\mathcal{F}[q]=-\frac{N}{2} \log 2 \pi-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{N}{2}-E_{q}[\log p(\mathbf{y}, \mathbf{x})]
$$

Example: Fimite dim Gaussian variational densities

$$
q(\mathbf{x})=(2 \pi)^{-N / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) .
$$

The variational free energy becomes

$$
\mathcal{F}[q]=-\frac{N}{2} \log 2 \pi-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{N}{2}-E_{q}[\log p(\mathbf{y}, \mathbf{x})]
$$

Taking derivatives w.r.t. variational parameters

$$
\begin{aligned}
0 & =E_{q}\left[\nabla_{\mathbf{x}} \log p(\mathbf{y}, \mathbf{x})\right] \\
\left(\boldsymbol{\Sigma}^{-1}\right)_{i j} & =-E_{q}\left[\frac{\partial^{2} \log p(\mathbf{y}, \mathbf{x})}{\partial x_{i} \partial x_{j}}\right]
\end{aligned}
$$

Stochastic differential equation

$$
\frac{d X}{d t}=f_{\theta}(X)+\text { 'white noise' }
$$

E.g. $f_{\theta}(x)=-\frac{d V_{\theta}(x)}{d x}$

Prior process: Stochastic differential equations (SDE)

- Mathematicians prefer Ito version

$$
d X_{t}=\underbrace{f\left(X_{t}\right)}_{\text {Drift }} d t+\underbrace{D^{1 / 2}\left(X_{t}\right)}_{\text {Diffusion }} \times \underbrace{d W_{t}}_{\text {Wiener process }}
$$

for $X_{t} \in R^{d}$

- Limit of discrete time process X_{k}

$$
X_{k+1}-X_{k}=f\left(X_{k}\right) \Delta t+D^{1 / 2}\left(X_{k}\right) \sqrt{\Delta t} \epsilon_{k}
$$

ϵ_{k} i.i.d. Gaussian.

Path with observations.

Inference of unobserved path.

What we would like to do

- State estimation (smoothing:) $p\left[X_{t} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right]$

What we would like to do

- State estimation (smoothing:) $p\left[X_{t} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right]$
- Use Bayes rule for conditional distribution over paths $X_{0: T}$ (∞ dimensional object)

$$
p\left(X_{0: T} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right)=\underbrace{p_{\text {prior }}\left(X_{0: T} \mid \theta\right)}_{\text {dynamics }} \underbrace{\prod_{n=1}^{N} p\left(y_{n} \mid X_{t_{n}}\right)}_{\text {observation model }} / p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right)
$$

What we would like to do

- State estimation (smoothing:) $p\left[X_{t} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right]$
- Use Bayes rule for conditional distribution over paths $X_{0: T}$ (∞ dimensional object)

$$
p\left(X_{0: T} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right)=\underbrace{p_{\text {prior }}\left(X_{0: T} \mid \theta\right)}_{\text {dynamics }} \underbrace{\prod_{n=1}^{N} p\left(y_{n} \mid X_{t_{n}}\right)}_{\text {observation model }} / p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right)
$$

- Parameter estimation:
(1) Maximum Likelihood: Maximise $p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right)$ with respect to θ
(2) Bayes: Use prior over parameters $p(\theta)$ to compute

$$
p\left(\theta \mid\left\{y_{i}\right\}_{i=1}^{N}\right) \propto p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right) p(\theta)
$$

Example: Process conditioned on endpoint

Wiener process with single, noise free observation $y=X_{T}=0$

How to represent path measure?

- Conditioned process is also Markovian!

How to represent path measure?

- Conditioned process is also Markovian!
- It fulfils SDE

$$
d X_{t}=g\left(X_{t}, t\right) d t+D^{1 / 2}\left(X_{t}\right) d W_{t}
$$

with a new time dependent drift $g\left(X_{t}, t\right)$ but the same diffusion D.

How to represent path measure?

- Conditioned process is also Markovian!
- It fulfils SDE

$$
d X_{t}=g\left(X_{t}, t\right) d t+D^{1 / 2}\left(X_{t}\right) d W_{t}
$$

with a new time dependent drift $g\left(X_{t}, t\right)$ but the same diffusion D.

- Previous example: $g(x, t)=-\frac{x}{T-t}$ for $0<t<T$.

Change of measure theorem and KL divergence for path probabilities

- Girsanov theorem

$$
\frac{d Q}{d P}\left(X_{0: T}\right)=\exp \left\{-\int_{0}^{T}(f-g)^{\top} D^{-1 / 2} d B_{t}+\frac{1}{2} \int_{0}^{T}\|f-g\|_{D}^{2} d t\right\}
$$

B_{t} : Wiener process with respect to Q and

$$
\|f-g\|_{D}=f^{\top}(x, t) D^{-1} g(x, t)
$$

Change of measure theorem and KL divergence for path probabilities

- Girsanov theorem

$$
\frac{d Q}{d P}\left(X_{0: T}\right)=\exp \left\{-\int_{0}^{T}(f-g)^{\top} D^{-1 / 2} d B_{t}+\frac{1}{2} \int_{0}^{T}\|f-g\|_{D}^{2} d t\right\}
$$

B_{t} : Wiener process with respect to Q and

$$
\|f-g\|_{D}=f^{\top}(x, t) D^{-1} g(x, t)
$$

- Let Q and P be measures over paths for SDEs with drifts $g(X, t)$ and $f(X, t)$ having the same diffusion $D(X)$. Then

$$
D[Q \| P]=E_{Q} \ln \frac{d Q}{d P}=\frac{1}{2} \int_{0}^{T} d t\left\{\int d x q(x, t)\left\|g(x, t)-f_{\theta}(x)\right\|^{2}\right\}
$$

$q(x, t)$ is the marginal density of X_{t}.

The (full) variational problem

- Minimise variational free energy $\mathcal{F}(Q)=$
$=\frac{1}{2} \int_{0}^{T} \int q(x, t)\left\{\left\|g(x, t)-f_{\theta}(x)\right\|^{2}-\sum_{i} \delta\left(t-t_{i}\right) \ln p\left(y_{i} \mid x\right)\right\} d x d t$
with respect to the posterior drift $g(x, t)$.

The (full) variational problem

- Minimise variational free energy $\mathcal{F}(Q)=$
$=\frac{1}{2} \int_{0}^{T} \int q(x, t)\left\{\left\|g(x, t)-f_{\theta}(x)\right\|^{2}-\sum_{i} \delta\left(t-t_{i}\right) \ln p\left(y_{i} \mid x\right)\right\} d x d t$
with respect to the posterior drift $g(x, t)$.
- The marginal density $q(x, t)$ and the drift $g(x, t)$ are coupled through the Fokker - Planck equation

$$
\frac{\partial q(x, t)}{\partial t}=\left\{-\sum_{k} \partial_{k} g_{k}(x)+\frac{1}{2} \sum_{k l} \partial_{k} \partial_{l} D_{k l}(x)\right\} q(x, t)
$$

Variation leads to forward-backward PDEs: KSP equations (Kushner '62, Stratonovich '60 \& Pardoux '82).

The Variational Gaussian Approximation for SDE

(Archambeau, Cornford, Opper \& Shawe - Taylor, 2007)

- Approximate (Gaussian) process over paths $X_{0: T}$ induced by linear SDE:

$$
d X_{t}=\left\{A(t) X_{t}+b(t)\right\} d t+D^{1 / 2} d W
$$

- Diffusion D must be independent of X !
- Cost function (action) is of the form $\mathcal{F}_{\theta}[m, S, A, b]$.

The Variational Gaussian Approximation for SDE

(Archambeau, Cornford, Opper \& Shawe - Taylor, 2007)

- Approximate (Gaussian) process over paths $X_{0: T}$ induced by linear SDE:

$$
d X_{t}=\left\{A(t) X_{t}+b(t)\right\} d t+D^{1 / 2} d W
$$

- Diffusion D must be independent of X !
- Cost function (action) is of the form $\mathcal{F}_{\theta}[m, S, A, b]$.
- Constraints are evolution eqs. for marginal mean $m(t)$ and covariance $S(t)$

$$
\begin{aligned}
& \frac{d m}{d t}=A m+b \\
& \frac{d S}{d t}=A S+S A^{\top}+D
\end{aligned}
$$

\rightarrow nonlinear ODEs instead of PDEs!

Prediction \& comparison with hybrid Monte Carlo

$$
d X=X\left(\theta-X^{2}\right) d t+\sigma d W .
$$

$$
T=20, \theta=1, \sigma^{2}=0.8 \text { and } N=40 \text { observations with noise } \sigma_{o}^{2}=0.04 \text {. }
$$

Posterior for θ

Breakdown for large observation noise

Double well with observation noise $\sigma_{o}=0.6$

Variational inference for higher dimensions: Mean field approximation

Action functional (Vrettas, Opper \& Cornford, 2015) for mean $m_{i}(t)$ and variance $s_{i}(t)$ (compare to Onsager-Machlup)

$$
\begin{array}{r}
\mathcal{F}_{\theta}[q]=\sum_{i=1}^{d} \frac{1}{2 \sigma_{i}^{2}} \int_{0}^{T} E_{q}\left[\left(\dot{m}_{i}-f_{i}\left(X_{t}\right)\right)^{2}\right] d t \\
+\sum_{i=1}^{d} \frac{1}{2 \sigma_{i}^{2}} \int_{0}^{T}\left\{\frac{\left(\dot{s}_{i}-\sigma_{i}^{2}\right)^{2}}{4 s_{i}^{2}}+\left(\sigma_{i}^{2}-\dot{s}_{i}\right) E_{q}\left[\frac{\partial f_{i}\left(X_{t}\right)}{\partial X_{t}^{i}}\right]\right\} d t \\
-\sum_{j=1}^{n} E_{q}\left[\ln p\left(y_{j} \mid X_{t_{j}}\right)\right]
\end{array}
$$

Variational inference for higher dimensions: Mean field approximation

Action functional (Vrettas, Opper \& Cornford, 2015) for mean $m_{i}(t)$ and variance $s_{i}(t)$ (compare to Onsager-Machlup)

$$
\begin{array}{r}
\mathcal{F}_{\theta}[q]=\sum_{i=1}^{d} \frac{1}{2 \sigma_{i}^{2}} \int_{0}^{T} E_{q}\left[\left(\dot{m}_{i}-f_{i}\left(X_{t}\right)\right)^{2}\right] d t \\
+\sum_{i=1}^{d} \frac{1}{2 \sigma_{i}^{2}} \int_{0}^{T}\left\{\frac{\left(\dot{s}_{i}-\sigma_{i}^{2}\right)^{2}}{4 s_{i}^{2}}+\left(\sigma_{i}^{2}-\dot{s}_{i}\right) E_{q}\left[\frac{\partial f_{i}\left(X_{t}\right)}{\partial X_{t}^{i}}\right]\right\} d t \\
\\
-\sum_{j=1}^{n} E_{q}\left[\ln p\left(y_{j} \mid X_{t_{j}}\right)\right]
\end{array}
$$

Test on Lorenz 1998 model: $\mathbf{x}=\left(x^{1}, \ldots, x^{d}\right)$ with

$$
\frac{d x_{t}^{i}}{d t}=\left(x^{i+1}-x^{i-2}\right) x^{i-1}-x^{i}+\theta+\xi^{i}(t)
$$

System of 1000 SDE with only 350 components observed.

Nonparametric drift estimation

- Reconsider SDE $d X=f(X) d t+\sigma d W$: Infer the function $f(\cdot)$ under smoothness assumptions from observations of the process X.

Nonparametric drift estimation

- Reconsider SDE $d X=f(X) d t+\sigma d W$: Infer the function $f(\cdot)$ under smoothness assumptions from observations of the process X.
- Idea (see e.g. Papaspilioupoulis, Pokern, Roberts \& Stuart (2012) Assume a Gaussian Process prior $f(\cdot) \sim \mathcal{G} \mathcal{P}(0, K)$ with covariance kernel $K\left(x, x^{\prime}\right)$.

Basic idea

- Euler discretization of SDE $X_{t+\Delta}-X_{t}=f\left(X_{t}\right) \Delta+\sqrt{\Delta} \epsilon_{t}$, for $\Delta \rightarrow 0$.

Basic idea

- Euler discretization of SDE

$$
X_{t+\Delta}-X_{t}=f\left(X_{t}\right) \Delta+\sqrt{\Delta} \epsilon_{t}, \text { for } \Delta \rightarrow 0
$$

- Likelihood (assume densely observed path $X_{0: T}$) is Gaussian

$$
\begin{array}{r}
p\left(X_{0: T} \mid f\right) \propto \exp \left[-\frac{1}{2 \Delta} \sum_{t}\left\|X_{t+\Delta}-X_{t}\right\|^{2}\right] \times \\
\exp \left[-\frac{1}{2} \sum_{t}\left\|f\left(X_{t}\right)\right\|^{2} \Delta+\sum_{t} f\left(X_{t}\right) \cdot\left(X_{t+\Delta}-X_{t}\right)\right]
\end{array}
$$

- Posterior process is also a GP with analytical solution.
- For sparse observations (Δ not small) one needs to impute unobserved path $X_{0: T}$ between observations e.g. within an (approximate) EM-algorithm (Ruttor, Batz, Opper, 2013) .

A simple pendulum

$$
\begin{aligned}
& d X=V d t \\
& d V=\frac{-\gamma V+m g / \sin (X)}{m I^{2}} d t+d^{1 / 2} d W_{t}
\end{aligned}
$$

A simple pendulum

$$
\begin{aligned}
& d X=V d t \\
& d V=\frac{-\gamma V+m g / \sin (X)}{m I^{2}} d t+d^{1 / 2} d W_{t}
\end{aligned}
$$

$N=4000$ data points (x, v) with $\Delta t=0.3$ and known diffusion constant $d=1$.

Outlook

- Bias of approximation ?

Outlook

- Bias of approximation ? Not easy, because $D_{K L}$ only known up to a constant!

Outlook

- Bias of approximation ? Not easy, because $D_{K L}$ only known up to a constant!
- Get rid of bias by using q as informative proposal within MCMC sampler.

Outlook

- Bias of approximation ? Not easy, because $D_{K L}$ only known up to a constant!
- Get rid of bias by using q as informative proposal within MCMC sampler.
- More general infinite dimensional problems (F. Pinski, G. Simpson, A.M. Stuart, H. Weber, 2015)

Outlook

- Bias of approximation ? Not easy, because $D_{K L}$ only known up to a constant!
- Get rid of bias by using q as informative proposal within MCMC sampler.
- More general infinite dimensional problems (F. Pinski, G. Simpson, A.M. Stuart, H. Weber, 2015)
- Inference for SDE beyond Gaussian approximation (T.Sutter, A. Ganguly and Heinz Koeppl, 2016). Allows for state dependent diffusion.

Many thanks to my collaborators:

Dan Cornford \& Michail Vrettas (Aston U)
Andreas Ruttor, Florian Stimberg, Philipp Batz (TUB)

