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Manfred Opper, AI group, TU Berlin (TU Berlin) Variational approximation October 13, 2017 2 / 28



Probabilistic inference

Observations y ≡ (y1, . . . , yK ) (”data”)

Latent, unobserved variables x ≡ (x1, . . . , xN)

Likelihood p(y |x) forward model

Prior distribution p(x)

Inverse problem: Make predictions on x given observations using
Bayes rule:

p(x |y) =
p(y |x)p(x)

p(y)

Easy ?
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Not quite ...

Often easy to write down the posterior of all hidden variables

p(x1, . . . , xN |data) =
p(data|x1, . . . , xN)p(x1, . . . , xN)

p(data)

But what we really need are marginal distributions eg.

p(xi |data) =∫
dx1 . . . dxi−1dxi+1 . . . dxN

p(data|x1, . . . , xN)p(x1, . . . , xN)

p(data)

and

p(data) =

∫
dx1 . . . . . . dxN p(data|x1, . . . , xN)p(x1, . . . , xN)
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Variational approximation

Approximate intractable posterior

p(x |y) =
p(y |x)p(x)

p(y)

by q(x) which belongs to a family of simpler tractable distributions.

Optimise q by minimising the Kullback–Leibler divergence (relative
entropy)

DKL[q‖p(·|y)]
.

= Eq

[
ln

q(x)

p(x |y)

]
=

DKL[q‖p]− Eq[ln p(y |x)] + ln p(y)

Minimize the variational free energy

F [q] = DKL[q‖p]− Eq[ln p(y |x)] ≥ − ln p(y)
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The variational approximation in statistical physics

(Feynman, Peierls, Bogolubov, Kleinert...)

Let p(x |y) = 1
Z e−H(x) and q(x) = 1

Z0
e−H0(x)

The variational bound on the free energy is

− lnZ ≤ − lnZ0 + Eq[H(x)]− Eq[H0(x)] = F [q]

Equivalent to first order perturbation theory around H0

Well known approximations: Gaussian, factorising (”mean field”).
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Example: Fimite dim Gaussian variational densities

q(x) = (2π)−N/2|ΣΣΣ|−1/2 exp

(
−1

2
(x−µµµ)TΣΣΣ−1(x−µµµ)

)
.

The variational free energy becomes

F [q] = −N

2
log 2π − 1

2
log |ΣΣΣ| − N

2
− Eq[log p(y, x)]

Taking derivatives w.r.t. variational parameters

0 = Eq [∇x log p(y, x)]

(ΣΣΣ−1)ij = −Eq

[
∂2 log p(y, x)

∂xi∂xj

]
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Stochastic differential equation

dX

dt
= fθ(X ) + ’white noise’

E.g. fθ(x) = −dVθ(x)
dx
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Prior process: Stochastic differential equations (SDE)

Mathematicians prefer Ito version

dXt = f (Xt)︸ ︷︷ ︸
Drift

dt + D1/2(Xt)︸ ︷︷ ︸
Diffusion

× dWt︸︷︷︸
Wiener process

for Xt ∈ Rd

Limit of discrete time process Xk

Xk+1 − Xk = f (Xk)∆t + D1/2(Xk)
√

∆t εk .

εk i.i.d. Gaussian.
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Inference of unobserved path.
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What we would like to do

State estimation (smoothing:) p[Xt |{yi}Ni=1, θ]

Use Bayes rule for conditional distribution over paths X0:T

(∞ dimensional object)

p(X0:T |{yi}Ni=1, θ) = pprior (X0:T |θ)︸ ︷︷ ︸
dynamics

N∏
n=1

p(yn|Xtn)︸ ︷︷ ︸
observation model

/p({yi}Ni=1|θ)

Parameter estimation:
1 Maximum Likelihood: Maximise p({yi}Ni=1|θ) with respect to θ
2 Bayes: Use prior over parameters p(θ) to compute

p(θ|{yi}Ni=1) ∝ p({yi}Ni=1|θ)p(θ)
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Example: Process conditioned on endpoint

Wiener process with single, noise free observation y = XT = 0
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How to represent path measure ?

Conditioned process is also Markovian!

It fulfils SDE
dXt = g(Xt , t)dt + D1/2(Xt) dWt

with a new time dependent drift g(Xt , t) but the same diffusion D.

Previous example: g(x , t) = − x
T−t for 0 < t < T .
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Change of measure theorem and KL divergence for path
probabilities

Girsanov theorem

dQ

dP
(X0:T ) = exp

{
−
∫ T

0
(f − g)>D−1/2 dBt +

1

2

∫ T

0
‖f − g‖2

D dt

}
Bt : Wiener process with respect to Q and
‖f − g‖D = f >(x , t)D−1g(x , t)

Let Q and P be measures over paths for SDEs with drifts g(X , t) and
f (X , t) having the same diffusion D(X ). Then

D [Q‖P] = EQ ln
dQ

dP
=

1

2

∫ T

0
dt

{∫
dx q(x , t) ‖g(x , t)− fθ(x)‖2

}
q(x , t) is the marginal density of Xt .
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The (full) variational problem

Minimise variational free energy F(Q) =

=
1

2

∫ T

0

∫
q(x , t)

{
‖g(x , t)− fθ(x)‖2 −

∑
i

δ(t − ti ) ln p(yi |x)

}
dx dt

with respect to the posterior drift g(x , t).

The marginal density q(x , t) and the drift g(x , t) are coupled through
the Fokker - Planck equation

∂q(x , t)

∂t
=

{
−
∑
k

∂kgk(x) +
1

2

∑
kl

∂k∂lDkl(x)

}
q(x , t)

Variation leads to forward–backward PDEs: KSP equations (Kushner
’62, Stratonovich ’60 & Pardoux ’82).
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The Variational Gaussian Approximation for SDE

(Archambeau, Cornford, Opper & Shawe - Taylor, 2007)

Approximate (Gaussian) process over paths X0:T induced by linear
SDE:

dXt = {A(t)Xt + b(t)} dt + D1/2dW

Diffusion D must be independent of X !

Cost function (action) is of the form Fθ[m, S ,A, b].

Constraints are evolution eqs. for marginal mean m(t) and
covariance S(t)

dm

dt
= Am + b

dS

dt
= AS + SA> + D.

→ nonlinear ODEs instead of PDEs !
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Prediction & comparison with hybrid Monte Carlo

dX = X (θ − X 2)dt + σdW .
T = 20, θ = 1, σ2 = 0.8 and N = 40 observations with noise σ2

o = 0.04.
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Posterior for θ
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Breakdown for large observation noise

Double well with observation noise σo = 0.6
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Variational inference for higher dimensions:
Mean field approximation

Action functional (Vrettas, Opper & Cornford, 2015) for mean mi (t) and
variance si (t) (compare to Onsager–Machlup)

Fθ[q] =
d∑

i=1

1

2σ2
i

∫ T

0
Eq

[
(ṁi − fi (Xt))2

]
dt

+
d∑

i=1

1

2σ2
i

∫ T

0

{
(ṡi − σ2

i )2

4s2
i

+ (σ2
i − ṡi )Eq

[
∂fi (Xt)

∂X i
t

]}
dt

−
n∑

j=1

Eq

[
ln p(yj |Xtj )

]

Test on Lorenz 1998 model: x = (x1, . . . , xd) with

dx it
dt

=
(
x i+1 − x i−2

)
x i−1 − x i + θ + ξi (t)
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System of 1000 SDE with only 350 components observed.
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Nonparametric drift estimation

Reconsider SDE dX = f (X )dt + σdW : Infer the function f (·) under
smoothness assumptions from observations of the process X .

Idea (see e.g. Papaspilioupoulis, Pokern, Roberts & Stuart (2012)
Assume a Gaussian Process prior f (·) ∼ GP(0,K ) with covariance
kernel K (x , x ′).
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Basic idea

Euler discretization of SDE
Xt+∆ − Xt = f (Xt)∆ +

√
∆ εt , for ∆→ 0.

Likelihood (assume densely observed path X0:T ) is Gaussian

p(X0:T |f ) ∝ exp

[
− 1

2∆

∑
t

||Xt+∆ − Xt ||2
]
×

exp

[
−1

2

∑
t

||f (Xt)||2 ∆ +
∑
t

f (Xt) · (Xt+∆ − Xt)

]
.

Posterior process is also a GP with analytical solution.

For sparse observations (∆ not small) one needs to impute
unobserved path X0:T between observations e.g. within an
(approximate) EM–algorithm (Ruttor, Batz, Opper, 2013) .
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A simple pendulum

dX = Vdt,

dV =
−γV + mgl sin(X )

ml2
dt + d1/2dWt ,

N = 4000 data points (x , v) with ∆t = 0.3 and known diffusion constant
d = 1.
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Outlook

Bias of approximation ?

Not easy, because DKL only known up to a
constant !

Get rid of bias by using q as informative proposal within MCMC
sampler.

More general infinite dimensional problems (F. Pinski, G. Simpson,
A.M. Stuart, H. Weber, 2015)

Inference for SDE beyond Gaussian approximation (T.Sutter, A.
Ganguly and Heinz Koeppl, 2016). Allows for state dependent
diffusion.
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More general infinite dimensional problems (F. Pinski, G. Simpson,
A.M. Stuart, H. Weber, 2015)

Inference for SDE beyond Gaussian approximation (T.Sutter, A.
Ganguly and Heinz Koeppl, 2016). Allows for state dependent
diffusion.

Manfred Opper, AI group, TU Berlin (TU Berlin) Variational approximation October 13, 2017 27 / 28



Many thanks to my collaborators:

Dan Cornford & Michail Vrettas (Aston U)
Andreas Ruttor, Florian Stimberg, Philipp Batz (TUB)

Manfred Opper, AI group, TU Berlin (TU Berlin) Variational approximation October 13, 2017 28 / 28


